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: PREFACE

host of the mathematical techniques that are in use tod4 were developed

to meet practical nee 'ds. The elementary arithmetic operations have obviob.s

uses in everyday life, but the mathematical concepts which are intrAided at

tale junior high school level and above are not as obviotisly useful.

9 The School Mathematics Study Group has been exploring the possibility

of introducing some of the basic Concepts of mathematics through the use of

some simple science experiments. Several units were prepared during the

sumihr Of 1963 and were used on an experimental basis in a number of class-

rboms during the following year: On the basis of the results of these trialS,

'these units *ere revised during the summer of 1964. .

° . 0

0? This text is designed to-be usable with ar.;, mathematics textbook in
o°.

° common Ise. It is not meant .eo replace the text-Look fortne course, out to
90 ,

supplPement it. Previous ftcquaintance with science on the part of the student

is unnecessary. The scientific principles involved are fairly simple and

aretexplained as much as is necessary in the,text. Eadh° experiment.opens a

door into a new domain in mathematics: measurement, inequalitIes,he number

line, relations and graphs. Willhopethat student learning apd understanding

will be imprOved through the use of this material.

The experimehts have all been done 44 actual classroom situations.
. . .

Every effort has been made to make the directiona'for the experipfits as

clear and simple as possible. The-apparatus has.been kept to a minimum.

The writers sincerely hope that this approach tl) mathematics will
.

prove both useful and interesting to the student.

.

ere ;

0
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Chapter 1 r

AN EXPERTMENTALAPPROACH TO THE REAL, NUMBERS
,

...

1.1 Introduction -

r ,
. ,

Mucci of ti4.develOpmeat of mathematics has been motivated by the
- -

...-
seienceb; -tilere**ka.neel'to explain andinterpret the olverva-44.ons,of -.\_-,

' scientific' phendmena. Thl:s need continues even today.. The mathematics that
.

has been developed to satisfy-the needs of the scientist is generally carried

far beyond tie immediatessituatilm thai prompted It.* This is the work of

the thatheniatician. These fuytherextenalons Of,mathematics ofteh suggest

lew theories and experimental liossibilities to the scientist...,
.

, , .

a'. .

'
r

In short, the connection betWeen mathematics and science is,both in-

timate anti far reaching. W.thout mathematics 'the scientist would be -Fable

to s;3tematrze and interpret his experiments. He 'Could not,generaliie his

results and ;Ake predictiont,for the outdome of future experiments. Without
.

^ .

stimulation. from the scientists,
0.

mathematicians would work, in an unreal world
. 4, - .

. . J. . -..of their.own design. :
.. ,,,

,
.

- of the spirit of science.will become evident as we proceed, no particular ',
.. il ' A

. . , r , i
scientitib..backgronnd'is required. .

. ,

, e I

1.-"v

In the work that follOws, mathethatics Will be developed to meet the ''',

particular needs of a set.of exp&imental situations. In each case this
. .

mathemdtics will arise from an experimental setting.. Once the apptopriate

411athema.t.ical descriptions of the scientific experimeni.are found, a number

of logical extensions of the mathematical.structure will be made. In this
/

way we will developour mathematics in much the same way that mathematics has

'been developed in the,pqdt and continue& to be developed today, Although much.-

1.2 The Loaded ,Beam

Once we have decided to center our investigation upon some particular 4

aspect of naturp, we have to make a careftil Analysis of our 'proposed experi-

mental procedure to

results.' Our first
v.

bending of A "beam",

as simple as this on

4

determine the factors that might posSibly influence our

experiment in ,the' physical sciences will involve the.

fiXed at one end and loaded at the other. EVen a system

e is. susceptible to a wiyle variety of fnflurncep.
4

40

4.
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- ;

..The Amount of bending will obvidusly depend on the type of ;'beam" we choose

and the:way we load it. Plfhrent clamping pointd for the'fixed end and

different points for loading the free end will also influence the amount of

%ending. It is,impoTtant to pezmitno more thah one of these conditions to

,influenCe the bending of the beam at any one time. All other
,

conditions must
-1t)

not he allowed to change.

A 15zinch flexible miler may be

claMped'to the desk with a"C-dlame

and ed as ,a beam. (See Figure 1.)

the beam is loaded from the free end, ,

it ,will bend. To measure-the be ding

of the beam, we will simply recold the 4

changing position ofthe free end of

the beam as-the load- is changed. You

may find that some form of a pointer

,arrangement, such as a straight pin

.fastened to the free brid,'14111 be

helpful. .

Place a piece ofmasking tape

' over the numbers on"the meter stick
r-

'in such a way that the graduations of

the scale are not covered (Figure 2).

Support the,meter stick perpendicular

to-th floor so 46e the position of

414 end of the beam can,be,read on the

acale.as the-load changes. Adjust the

meter stipkbo that the pointer is in

- line with one of the centimeter mark-

ings-on-the stick.- Op-the-maskipg.,,,

tape oppoilte this mirk, write 0.

;.,Starting at the '0 mark, draw two Arrows

-431ong .4he length of the itleter sticks

eaCh'extending in opposite directions.

Label the arFiew wild.* points up ."up"

and label the Other arrow "down". Ake

. ;

Flgure -1

... the counting number$-to number the

millimeter graduatiOn on the scale. It

is enough'tto write numberd at10-mm Figure 2

t



#tervs in the upward and downward

dIrbctioni from the 0 as shown in

Figure 3.

There should be.a smell hole in

the rule1724beani aboirtOne=lialfTfiCh"-

from the free end. Thread a piece of

nylon string through this hole and

around' the ruler -in such a way that

the string is. firmly attached to the .

ruler and abouX two fet of string

hangs free on either side of the ruler.

(See Figure 4.)

' Suspend a single pulley above -

,the beam. A ring-stand or some other
A

similar sum:biting device may be.used

for this pultbse.' Pass one end of the

string up.over the-pulley so that the

,masses maybe hung from the free end

Of the string. Allow the other end

of the string to harig 'below the end

of thebean so that masses may also be

hung,from this end (Figure 5).

ar

ibw halt a 30-gram mass in a

downward direttion'i'rom the'load point

and take a reading of the position 9f

the end of the beam. Continue by,a1d2

ing 30 grans at a time, until yOu have .

- _ ,

at least 10'readings. Be' -very careful

-in reading the positibn bf trie free

'end-b1"-t111-Uak. Alulays try. to

?'sight" along the.pointer,in the same,(f
way. Make you-.position reading to

..the:nearest

:s

Ranovthe 1644.from the beam

and repeat the eicperimeiii lianging

he'masses from the pulley, 'adding.

0.94=WNf4AMe,unt4.1 yOU have at

t'
Figure 4

Figure 5

A



leait 10 moresteddinge. Again Make your losition'reading to-the nearest miliir.

meter. .

You should record your'data in an orderly fashion. Along with the load:

values and the positionreddings, yoW'should,record such things as- the type ors
.

beam used and its length, i.p...that part' which extends dutward fran the table

top to'the, load point, -In recording the'position of the end of the beam that

is associated with each load, atabular arrangement will have the most meaning.

Fur-example, yoix could now label youl: columns fox data ad shown in Figure 6.

.

THE LOADED BEAM

.r"Type of Beam r

EXPERIMENT `I

Length
..

of Beam

,

N

-

. . .

Load hung down. Load suspended from pully
. ...

.

Load

i .

(grams)

. 'PositiOnPQ
. (millimeters)

Load

.
(gram's)

. Position

r' P,
(milliMeters)

,

I
.

.

.....

.

.

. ,

..

.

.

r

. .

. . -

-
...

a

s

-

.

'

.

FigUre,6
-

,

Ietirexperiment;-theheamWia dere-a-a-bah Upward- and downward.'
--e.a:.,.. .0 , s. 1

Our scale had been graduated to tell us how much the beam bent, but there was

no easy not9tinnAtell the direction of the bending...We could just be care-

ful and always record our reading as. "? mm up" or "6nati down", but over a
. t,

large number of readings this yotation becomesTite clumsy. But more impor-

tant than jUat'ease of notation, this idea of direction opens up a new system
--...--

of numbers which is most useful: to '-the scientist. .

. ,

-4

7

t..
Ifyou look at the scale you have made so far, you should note that it

. .----,,,

is nothing more than a ;lumber linefon which the numbering extends in eithel-

direction from the Q. In the past, when we have latvle number lines, we,fndicated-... e .
that some point on the line was to have a coordinate and some other point was

00.ts_to haVe'the coordinate 1. From this we were able to' nd points on the linen;

whose coordinates were the counting numbers. We wet lso stle.to talk about
,--

4



the numberd assigned as the coordinates of points between any tco successive :),
--,, , .

.

points already/odated.:. .For example, the Phint,midway between 0 and rhas

1
the coord4nate -,. .

7. ,In our experiment, however, we also proceeded in the'op-
. 4 t s . . J Q

posite direction along this line. This is.,a portion of the line"to which no

miters have
41

as 1st been assigned as coordinates. Let us now consider anrx-
,

.

tension Of our set of numbers which Will assign numbers as the coordinates of
, .

these. points. 4.

I
C.

1 :3 The Real Number Line
. ,

The /umber line,used in.

30

20

10

fa 0
' "

10 The idea op distance has been it,

20 strong.underlying. theme in the eon-

1

the experiment should look iimilarto the number

'line in Figure 7. However, the hilMber.

line does not have to be drawn in a

' vertical position. In fact, "in text-
*

books,4t-is.most'often shown in.a

horizontal direction.

30 struction of'a number line. Let us '',

keep this idea and find a point on

Figure 7 this line such that the zeio paint is

.,just h4lf-way betWen Som:rnew point and the unit point, as in Figure 8.

new .

point
1 6,

4, ,

Figure 8

9,,

Now. the distance from the new Point to the zero point is the same as the dis-
'cc

tancefrom the zero point to the unit poiht. In 4ft:her words, .the hew pdint is

also one unit of distance 'from Zhe Zero point. "However, we have already used,

the symbol 1 for the coOrdinatedof the unit pointand to use the same symbol,

-,,,for the coo Inat,e'of aoecond point would:in very confusing. Letus then

agree upon a new symbol for the coorain &te of thig" point. The new symbol
1

shaiLX tell'ui that the distance of the point from'the zero point,isone unit

.'but ,it is in a direction oppositeluto that
}

/of theunit pOint. ,The symbol, that
: . * ,

has been agreed upon for this coordinate is', " -1" (read "negative one ").
, ,. , 0

,., 4 t

. We4dght ask in which direction to proceed'Ndp the'positive numbers and

*4. ,
-.. .

0 0" .4
4 . N e

5

0



which. the negative. This is an arbitrary choice. That is, if we liked, we

could start at the zero point and place the unit point to the left. The

negative numbers would then be placed to the rightof the zero, point. How-
.

ever,if we had placed the unit point to the right of the zero point, the,

Whole nUmbe'ringproedure onthe line would have been reversed, Either.
;.4 ;

method is acceptable,but as soon as one method is adopted you should stay
.

with it and be consistent. -the method that is, used most often is to place

he unit point to the right of the zero point.

The set of all numbers teed as the comdinates of points on the number

line is called'the set of real numbers. If the unit point is,to the right of

zero, -then the numbers to the right are called the positive real nUMbers and

th'e numbers to the left are called the negative real numbers. In this
4

language, the numbers of arithmetic are called' the non-negative real numbers.

Each counting number has a negative. There are two points.' on the nuiber

__line for eachidistance. If the distance from, zero is tq bethreeunits, there
. .

is one point.3 units to the right of the_zero point, and a second point 3 units

to the left. The coordinate of the first point 'is 3 and the ,coordinate of the
,

second point is -3: For every number of aritfimetictextept zero, -the-set of

real numbers contains a negative number. ?or example, for every counting.num-

ber in the set of real numbers, there is also anothel- number in:this set which
I+ .4

is the negative.of the counting 'number.

The number zero, the counting numbers, and the negatives of the counting

numbers all together make up a set of numbers called the integers, (... -3,

-2, -1, 0, 1, 2, 3, ...). 'Another name fOr the counting numbers is the sosi-

tive integers. The set of all negatives of the counting numbers ig called the,.

negativtintegers.

You may iecall that a rational number of arithmetic was defined as any

number which could be expressed as a-fraction having a
f

whole,nvmber as a
. 1

numerator and a counting number as a denominator. Henee, 0,,3, .p 5 and...33...

are all examples of such rational numbers. It is possible to express 0 as
0 3

_

--and 3 as The set ofrrational numbers does include the set of all in--
1 1

tegers. The number is already expressed in the form stated in the defini-
1

tion. It is possible to express .5 which also satisfies the definition.

of rational number. The decimal fraction .33 , which is a nonterminattng,
l

repeating,decimal fraction, can be expressed as, and dgain we see that the

definition of a-rational,number spplies,to this nuMber.%

For all rational numbers, with the exception of zero, there is a n egative

3
6



of that rational number iathe set ofrefil numbers. The coordinate of the '

p

point midway, between -1 and -2 is - i . The distance of the-point to the left

:4 of zero is the same as. the distance from zero to the);qint whose coordinate is
1 .,

r 1:
3. (Figure 9). N

, 2 , .

t

I:i

4 4.

-3t 2
-2 -3 -a l 11-,1 0

,2 3 d

d
,1' i 1

1 6 3
2. 2 ,

5 3

Figure 9

1

"'

4

, ,Bach rational number is now assigned,to-a poin f,the number line, but

there remain, many points to which rational numbers cannot be assigned. The '

numbers associated with. these points are.called the irrational numbers: Ir--
- _

rational numbers are also real numbers. HenCe,' we Can regard the set °friar:

numbers as;the boM5inid set of rational-and-irrational nuMbers.- .

.
Where are spme of the points on the nyMber;line'yhich:do not 'Correspond'

to.rational.numOrs? There are a great many such numbers, but it is difficult

to Prove that any. particular one is irrational. One example or a real number

.whicPcat be proved to be irrational is T, that number which when mUltiplied

by itself gives 2. This number is called "the square root of two".

Here is one method'of finding a length to which we can-associate the

square root of as the ure. This method is based on the understanding

of the formulas f th= area of a right triangle and the area of a square.

You will recall that the area of a right triangle is one:half the product of

the lengths two sidpg of the triangle,which form the right angle. If we

have a right triangle such that both of these sides pre a unit length (Figure 10)

then the area of this triangle 'is (1)(1): or .

Par v

9

411

0



Nov if we take four of these triangles and fit them together, like the pieces

of a jigsaw puzzle, we notree t t they form'a square (Figure 11). Since each
0 1

'
triangle had an area of and thbre are four suchtiiangles,in the square,

2
t 1N

the area of the square iglitAp, or 2.

side multiplied by itself.

The area of a square is the length.of a

Figure 11

In this case them the length of the side of the squareis-the number

which, yhen,multiplied by itself, is equal to two We have already defined

. In order.toNlocate.apoint_on the nuper line for 1/2, allwe

hate to do is construct a right triangle with the two sides of the right angle

one unit in length and transfer the length of thethird ad to our'nmSber
st

line (Figure 12).

< I t I

-3 -2 , - /2- -1

Figure 112

This we can do by di-4 Qg a circle whose,center is at the7point 0

line and whose radiuS is the saMe
e
length as the third side of the triangle.

This circle, cuts. the number line in two points, whoSe coordinates are the real

I > , ,

1 if° 2 y

on the number

'numbers A and - , respectively.

. 1We havt-aVaded trying to prove that the 'number v is. not a rational num-

b er. ;Stieh h proof does exist and you will probably Study, this proof in a later

course.d At this time,.however, you might try to test known rational numbers

ysring then to see if any product .is exactly 2. Some numbers you 4ght ee
arg 1.4;1%41 and'1.414.

r

There are many more points on
,

'

the rsalenumber line which ark; rrational

4 ; ;
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numbers. Some numbers which serve as c 'rdinates of these points are, g

and 4 . /.

iercise 1 t

For each -.of the following, construct a number line and deterMine the

poixits whose coordinates are as follows:

(a) ko, 4, 2, - 2, -3

(b) -i, 2.5, -2.5, 3

(c) -5, - 2, 2, 5,6

(a) - - 2I'

(e) + 1, - 1, -(,/2 1), - 4- 1

r

2. Arrange each suet of three numbers given below in the order in which they

Would appear on the number lille,'reading from left to right.

(s) 10, 4,..L , (e) i;

F

(b) 4,'2, 74 (f) .4., J, 1:73

4,

(c) ,-1, -2,' -3 'Ai., (g) "224, - ./5, -

, 5

WhLch of the 'following rational numbers is closest to Z ?

(a)

(b) 121
,_

(c)

(d) 22

(e)

14 Ordering tthe Real Num rs
t®

The numberuline which we have drawn is a, phytical model of the set of

real numbers. As we continue our discussion of. the real numbers., let us re-
,

call'sane of the properties of the positive numbers. These Properties'have

already been well established' and we want to make certain-that.they are not -
, , ,

altered inany way.

'
The first property in which we are interested is*the property o order

4
9
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of the positive numbers. We know what isMeant by "2 is less than tr. In

terms of our iihysical model, this Means:thlat"2'.18 to-the left" of three. In

fact, if aan47b are two positive numbers,on the number line, and a is to the

[14ft orb, then a < b (a is less thafi b)-. : I
. .

set

a 1 ° b

. ..-

Figure `13
, , .1t,, 4 , -71, -...-. k, -; -!.4 -

. ,

As already stated, we arefflterested in keeping this property over the
, .

.

of ail real numbers. Therefore, our property can now be stated:.
0

,
"If a arid b are two real numbers on the number line and

la is to thg left of b,-then a''.< b.

If we consider, the numbers -b1.8 and 72. and teir

on the number tine we note that Nfie point whese.cOoi.dinate is -2.3 is to the

-reft of the point whose coordinate is,-1.8. Hence, -2.3 < -1.8.
i

If,we are not certain Ale position of two numbers on the number line,
.

ve,can be certain that the following property. holds.` .

If a and b are real numbers, then exactly'one 'of the

following is true:

a < b, a = b, b < a

This property is called the comparison property and holds for all real

numbers: For examples if a = -1.8 and b = -2.3, we have, already established

that b <a.

So far our ordering property has allowed us to compare only two real

numbers. T6 extend our ability to,order numbers in sets of three or more, we

introduce the transitive property.

If a, b and c are real numbers and if a < b and b < c,
-

than a < c.
,

By our definition of the relation < , afiy.negative number is less than zero,

and zero is less than any positive nuMber. Since we have asserted that the

transitive property holds over all real nuMbeis,_74 now conclude that any

"------negativ'enuilbe"r is less-than any positive number.

The`tfdEgItive property can also be used in determing the order between

. 17 10



two numbers. For example, which is less than thd other,

12L 66
Or 15

We notice, after some deliberation, that 9 is.approximately C.97, aid

66
is approximateV 5.07. Therefore, < 5 and 5 < tAe transitive

4 r ' 13
propertyit follows that

2.2y t--66 -

°39' 13
194 SinceWe can now use this information to order the numbers and -

66
. D

. ,

2t has already been established that
1211 66 '66

<u , we kndw that T3- is to the

right of 1'211 on the =flier line. This'means thst,i7 is farther from zero
39

66

94 66 1211 on
66 1211

.
than k.§-, so - -13- is to the left of - on the number line, and

13 3 9

Our last example shows us that if a anlib are both positive numbers and

r- /
-t.

\--,

a < b, then -b < .

EXercise 2

1. Use approp 'ate properties to order each of the following paieof num- -

bers.
.

(a) 0, 56 (f) i'.10.,67000

(b) 0, -7 (g) 4 '-''75 .

..

-

(c) -(33.3, 33 1. 4,(h) - i, 4 -:

(d) -50z -100 (i) it,' -3.14

(e) -(j) -1.73$

r P,

In the blanks belo, s'e one of th , to make a true

.
J i

sentence.

6
10

4

(f)
.

L2

(g) 1 +3 rj'4'

(h) .i25-

(i) .215 51-2-

r 13

81,
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' .3. Use the-transitive property to determine the ordering of the following

, groups Of4ree real numbers-.

(a) - 1 -1 12
5' 2'

(b) -n,

(c, 1.7,. 0, -1.7

(d) -

(e) 32, 42, (3 + 4)2

efy 1
, -v

1

-5
(g) 1 + 2, 1 + (2)2, 1 ()3 ,

2

'4. State a transitive property for ">" and illustrate this property with

Problems 3(a) and 3(b).

5. Sandy and Bob are seated on opposite ends of a seesaw, and Sandy's end
. .

of the seesaw comes' slowly to the grotuidarry replaces Sandy at one

end of the seesaw, after which Bob's end of.the seesaw comes to the

ground. Who is heavier, Sandy or Harry?

1.5 Opposites
*

When we loaded the beam from below we noticed that it was deflected f

downward. The pulley was used When loading the beam from above and this type

of loading resulted in a deflection of the beam.in the opposite direction.

If we refer baCk'to the data we collectedASection 1.2; we can conSlapr the

amount of deflectiOn that resulted' when equal loads were applied from below
ti

and from above. What downward deflect on resulted when a mass ol150 grams

was hung from the beam? How does thi deflection compare with the deflection

which resulted when the 150-gram mass pulled up on the beam?

Since we have already develop the concept of negative numbers, we cip
(

agree to refer to fOrces applied in the downward direction he direction of

the earth's gravitational, field) as positive and fees ap ie4 in an upward

direction (against the forte of gravity) as negative The effect of this

force was deflection of the beam. In order to be consistent we should Use

positive numbers to refer to downward bend and negative numbers to refer to

upward bend.

The answer to our question might now b'e: "A load of 150 grams causes

the beam to bend 16 mm while a load of -150 grams causes the beam to bend

-16 MM." In either Base the amount of the deflection is the same. We can

think' of this as a pairing off ofequal distances,on'the number line from 0

and on opposite sides of 0. Thus; :16 is at the same distance from 0 as is ..,

16 What number is at the same, distance from 0 as 1 I f you choose any2

t



a

,point on the number line,can you find a point it the same distance from 0
. .4

and on the opp te,side?

e twonuMbers in such pairs are on opposite sides'of 0, it is

pitural.to xellthem hposites. The opposite of a non-zero real number is Ni

the other real. number, which is at an'equal distance from 0 on the real number

line (Figure 14). Since there is no other point that is opposite the number
.

0, wecan consider Oto be its okra opposite;
. .

a

/ft

.Fi gur.

Let us c nsiaer sane tYpic er real numbers. We have saidlthat -2 is the

1
opposite of 2. / -2-What is the oppo;i:e of - ? Our discussion leads us to

agree that t;14
1

answer must be -However, thenotation we have used to indi-
,

.cate that we ,are referring to the opposite of a number has been'to place a

negative symbol to the left of the ydbol for the number. Jf4s means that we

1 I
might refer to the opposite of -

'

-f a -(- -f). This last symbol would be read

nut negative of a negative one-hal . We coffelude then that " i; is the

opposite of the opposite of
1 f,

. This conclusion can be stated in a general
.r

way:

For every real number = a .

s..

.,r

This process of determining the negative of any number can now be used

to simplify any notation ubing.lhe negative of some number. For example,,

-simplify the expression - If we consider the fiumber C-( -5)) , our

general rule tells us that this number is the same as the number 5. Replacing

13

20

a



4,4
. . ...

-

4

[(-5)] with 5,.the problem is reduced to - [5] which, of course, is -5 .
..

c

In the last section, the statement was made that if aand.b are Moth

positive numbers and a < b, then'-b < -a. We can now ask about the ordering

of any two real numbers if we know the order of their opposites., A similar
1

argument could be used with two negative numbers. For example, we knowthat
,,

.

-10 < -7 . Thef opposites of these rimhprs axe 10 and 7. We see.that this

property holds in this situation since 7 < 10:', There is one other case We-

should consider. Does this same property apply when one of .tHenuMbers is ,
.

, positive and the other negative? Any negative number is less than any posi-. ,

tive number, so - --' < 2 . The opposites of-these numbers are and -2. 'The2 - a 2
\order relation betweeri positive and negativelnumbers still applies; hence,

2

.
- 1 ewe,conclude that -2' < . Again we note that this property for the ordering

of opposites holds.' The general statement of. this property is:

For real numbers a and b, 'if a < b,

then -b < -a .

1. Simplify each of the

kerc3se 3
..........

A----
1

following expressions.'

(a) -(4.+ 2) . - (g) -(2 +,5) + 15
A.

(b) - (' -2.3) ' 01) -(7 10)

(c) -(42 +,0) (i) -(3 (-'3)

(&) -(3.6) (2.4) '(,J) -i,-(-5)] 4. 5

(e) :(42 x 0) (k) -(-7)

(f) -(-(-4)1 (1) -(-3) (-(-3)1 (-(-3)1

2. What kind of number is tx ifx is positive? If x isnegativeq If

x is zero?

3. What kind of number is x if =x is a positive number, If -x is a

negative number? IT -x is zeil!O

4. (a) Is every real number the negitive of some real number ? -

(b) Is the set of all negatimes of real numbers the same_as the,
-s

set of all real nUmbers?

(c) Is every opposite of a number a negative number?

r 4"



5., 'For each of the following pairs, deterr4ne -which is the greater nutblr.

(a),
II, (D)

. (0)

(I)

CO

.
2.91, --2.9f
-12,. 2

,a358, -762

4-1, 1 '

-370,, -121

.

.

. . ,
,(f) .0-.12, 0 4

(g)'

(h) -0.1, -0.01
(i) 0.1, 041

. :

o

: .

0

,

6. Write true s entences for the following numbers and their opposites,

using the relations ne or I5P . *

, &ample: For the numbers 2 and 7, 2 < 7, and -2 -7

(a) -

(b) 11E, -It

(c)

(d) 3(it + 8)

+ 6
(e)

8

7
-2

(f) ((3 4. 17)0] ((5 4. 0)3]

. 4

7. Let us write "'kw " for the phrase "is further from 0 than" on,the real
number line. Does "*, ",have the dompa.rison "property enjoyed by- ">";

that is, if a and b are different real numbers, is it true that a *11 b

or blrit a but-not both? Does "'kit " haVe a transitive property? For
which subset of the set %f real. numbers do " *-11 " and have the same

meaning?

Translate the 4ollowing English sentences into mathematical expressions,

9
'4

describing the vrialile used: I

(a) The load on -the' beam is greater thL 100 gramsp What is the load?

(b) The' deflection of the' beamyas no more than 18 =a up. What was the

deflectioli? .
low

to ,"the load. What was the load?:
(c)Paulhung3Ogrmisfl-omthebeam,butilim.-gramso.
Change the numerals "- ti: and "- " to forma with the sale d@nominators.,

t t

(Hint:. FiAt do this for bi.and t2,) What is the order of - p and -tao ?
2

,J, (Hint: Knowing tha order of g and
F'

what is the, order of theirs .

t
9-:

, - --:, opposites?)
.. - .-

, Now state a general rule for determining the order of two, negative
. t

I

iratiLonal numbers.

Oe

ss.

o

p.

43,
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1.6 Absolute Value\

Several times our discussion of'deflection of the bending beam-hasre-

ferred to the same amount of deflection in either direction. Sometimes it is
. .

,
convenient to consider only the amount with no regard to direction. In order.

to do this, we want to define a new and vexy-useful operation on a single real
. ,number: the operation of taking'its absolute value.

The absolute value of a non-zerp real number is the

greater of that number and its opposite. The absolute,

value of.0 is 0:

y this definitiop we can now state that the absolute value_of 4 is 4,

3 ' 3 tbecause the greater of 4 and ..1t is 4." The absolute value of - is . kWhy?)
2 2

What is the absolute value of -17? Which is always' the greater of anon-zero
.

number and its opposite, the positive or the negeLtive,nuthber?.,We have already

established that all positive numbers are greater than any negative number.
a

This then forces the absbluteAralue of any non-zero real number 'Co be aposi-

tive number. The symbol e use to indicate- theTiffsolute value of a number

n is Inli.yor example, -

3
141 = 14--) 1- 21 = 1-1/1 = if

.,

If we look at these roubers on the real number lint and consider their:

.absolute values, -we can conc;ude.thst the distdhce between a number and zero ',

is the absolute value of the number:

We note that for a non-negative number and zero, the absolute value is
°

the nuthber itself. That
.
is

a

For every real ntmber,x -which is 0 or positive, (x >

lx1 =x .

- ,

What can be said Of a negative number and its absolute value? We have:

already stated that the opposite o a negative number is greater than the

negative number. We also note tha, his number can be referred to as the.'

negative,ofthe negative number. Our definition of absolute value tells us

"'that 1-51 = -(-5) but this number is 3. This leads us to conclude tlidt:
n

For every ridge ive real nuMber'x, (x < 0),

= -x

1

16

I

Ar.



'We can now restate the definition of absolute value as folloWs;

a
...

-..

For everY positive real number x,

1xl x

For 0 = x,

1x1 = x

For every-negative real numbe'r

_ -

Exercise 4

'1. Find the absolut-e-valuei:of4be f011owing numbers:

(i) -7

(b) -(3)

(c) (6 - 4) ,

(d) -14 + 0

(e) -(10 -8\ ..

2. 'For a negative nuMber x, whieris greater, x or Ixf i
a

.3, .Whi.c11 of,the'following statementi3 are true?

(0 1-71 <3

(b) 1-21 5.1:31

(0) .141 < Ill

yi) 2 A 1:31 T

F 4.

(a) 121 +.131

(b) 1'21 131

(c) -(12f rip-

-4 (d) -0-21 + 1315

Pimplify eaCh of the following,

17

-3 .c 17'

(f) -2 < 13[

(g) 1171> 1-41

ch) 1-212 =4,

1-21 1-31

(k) -(1-31,- 2)

t(11' -(1-21 + 1231)

(a10 3 13 - 21

((:)) '1((1117511 : :21)

(0) 1-51 x 1-21

(p) -(1-21 x 5)

4.1

-,

_

1

"-
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.1.7 Addition of Real Namberi

Let us now return to our experiment with the bending beam. We will

use the equipment as descAbed in Section 1.2 and illustrated in Figure 5.

However, this time we will vary our loading technique and record the re'

suits sgil'et slightly different manner: ti

Wepwiiri use.t110ame reference which has already been developed ines
this chapter. All positive loads indicate are hung from

the beam while negative lads indicate that the masses acted on the beam

in an upiard direction with the aid of the pulley. You should record down-

ward deflection with positive numbers aid ulowatddeflection with negative
.

numbers:
.

,

We will make five different trial runs under varying load conditions.

For Trial I, fist load the beam with a 30 gram load and record the deflec-

tion reading. Replace the 30 grail load wlth a 20 gram load, and record

this new deflection. Now add the 30 graM load to the 20,4Fam load and

again record. the resultant deflection. Now remove these"masies frompe
t

beam and load it with a 50 gram mass: ,Figure eillustretes a data table

siiilar to the one you should make forecbrding the resu*s of your ex-

',perLment.

t

Trial

Load:

(grams)
It. _

:DeflectiOn

(411imetera)

30

20 ' !

20 + 30
,,-, \

50 .,

It

Figure 15,

ti

Now repeat theexperimenfor Trlels II, III, IV and V. Use the loading

order indicated it each of the following _tables illustrated in Figure

' )1

18' .yy

0.



Trial II

Load

(grew)
,

Deflecti

(millimet
.

,,,

-30 .

,..:

444

° =20

, . , ; s . i,

(-30) 4--(-,20) ' .

p
j 50

,

'

... .

' f

'LOad.

(grams)

Deflection.-

(millimeters)

, .t -;4-f ,'%4

200
. .. .

..IOC
,

200
.

+ (L100)
.'.

.

.

JO

N-,

Figure

Trial.III

Load

(grams)

Deflection

(millimeters)

.

200

-20(f ; ,

200 + (-200) ,

.

. -
.

Trial, V

Load

(grams)

,

DeileCtion-

(millimeters)

150

-200

- .

150

+:(..-200)

-,

-50

.

---1

.

. .

Lbt us now consider the results of Trial I. Let us call-thistable a

"physictg model of the "hendingheaesince this table help des'oribetthe

physical aitudtion Whitt' we ohierved when the beam was loaded and unloaded.

From thia,"Physical model" oaf the expeilmentyeNash-to describe a "mathema-

tical model" for the experiment. OUr "mathematical model" ilould,,give us an

accurate description of the experiment if we could be absolutely sure that

no grrOrs in measurement were possible and all of the equipment behaved in

an "ideal'r manner. The "mathematical model" which doe6 satisfy this ideal:

situation is the operation of 'addition of the real nuMberd.

kwe :igite the deflection for 30, grams and add to this "the deftg6tion

ipr,20 grams, ye.get a result which is "ideally" °close 'to the deflection foir'

19 2 es
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,

,

< .

50 grams. Suppose a 30-gram lad caused a deflectionLof 3 mm, a 20-gram 'load

a deflection of 2,mm and a 58-gram load a deflection of 5 mm. On the scale

we observed that the pointer first-Vent from 0 to 3, and.then fran 3 it moved

two more units in the positive directioni-The sum of 3and 2 is 5. We could

also.picture-tbis as addition on the number line as illustrated in Figure 17.

0

T 2

H.. t I

3 5

0

Figure 17

i ° p

This example reminds us of something we already know: To add a positive
e,

on the 'number line. What

number to a neg4tiire number?

mumber,to awsittve number, we move to the right

happens on the number line when we add a negative

In- Trial II, the loads were all directed up and the defle404antrwere in

the same direction. IX thee deflections are the opposite of those, in

.Triai I*, we now observe that(-3) + (-2)

,

r-- 2 T-
1

-3

4 f

-5

Figure 18

0

and to 'add a negative number to a negative number, we move to /eft on

the number line.

Our next concern is what happens on the number line when we add a posi-

tive number and a negative nudber. Trials, III, IV and. Vsive us experimental
_ .L.

illustrations of this type of addition. .
,

,If,auraxperiment follqwed.the pattern already rpdicated, Trial III

would reveal equal 'positive and negative deflections, Since posttive_loads

give downward deflection and negative loads-upwsrd deflection, we observe

that adding a negative load to a. positively - loaded beam reverses the direc-

tion in which the pointer had moved. In this particular case, the, amount

qf deflection should have been about the same for eac individual load. In

other words, the-two deflections had the same absolute valueand the final

`-.1. , ,

27
20

,?---.44,0



s.

position on the pointer would be the 0 mark on the scale. -

In Trial IV, the positive deflection was greater than the negative de-

ilection. Hence, adding the negative number to the positive number gives a

positivewresultwhich is equal to the difference between the absolute values

. of the two deflections.. Por examp42 we could consider 20 + (-10). On the

number line this could be illustrated by going from Ojto 20 (a distance equal

to 1201), then reversing direction and gping a distance equal to 1101. This

is the same as the operation of subtraction in arithmetic, and what has -hap-

pened is that we have subtracted 10 from 2A to get a final result of 10.

Trial V is similar to 11!rial IV, but since the negative deflection was

4 greater than the positive, deflection, the final deflection must be negative.

Figure 19 illuetrates the addition problem -20 + 10 and 10 + (-20). In both

. cases the final result is Again we notice that the result van be found"

bytaking the difference between 1-201 and.1101. However,. in this case-the

negative member has a greater absolute value 'than the positive,nuMber'and our

"bending beam" model indicates that the endresult should be negative.

9

+10;-----41

-20 -10

or -

0

14-- -20
-411 +10 --01

-10 / 0

Figure 19

10

We,have now described the, motion in all cases. Let us see if we can

learn to say how far we move. We want to find the sum of a and bon the

number liner. First we move lal units from zero, to the right if a,> 0, and

.-7to the left if a < O. From point a we now move 1bl units to the right if
)9

.

., b 0 and to the left if b < O. Check this procedure using data recorded
...

for Trials I through V (Figures 15 and 16).
. 410. ,

.

When we add two numbers, though,. ye are not in the.habit of using a num-

ber lin1e to find the sum. ,If we add two positive numbers, we merely fall back

on our knowledge of thd addition facts of arithmetic 1.e., 4 + 6 = 10.

.21
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However,. What is the sum.of two negative numbers? For example, what is

(24) + ( -6) ?

-1.1411ii-re-found, on the number line, that

. (-4) + (-6) (-10) .

-10-yiSh to think a bit more carefully about just how'we i-eithed (-10). We
eitp

begin by moving frcm 0 to (-4) which is to the left of O. "Distance between

a number and 0" was one of the meanings of the absolute value of a number.

--IretVeen '0' ancilt41 course-We'-r-sarZe?-iliattt''
f ,

.is easier to write 4 than 141, tile expression 1-4( reminds us that we.

were thinking of "distance from 0", and this Is worth remeMtering at present.

We next add (-6) by moving a distance Of 1-61 to the left. This results in a

-new position which is at a distance of 10 units in a negative direction frOm

9., Hence, (-4) + (-6) = -(1-41 1-61). . -10 .

_ You can reasonably ask at this point what we'haVe fecomplished by all

Have taken a simple expressiqp like (-4) + (-6), and made it look

mo cmplicited! Yes, but the expression -(I -4I + 1-61)/ complicated as it

Uoks, his one great advantage. It contains only operations which we know

how to do from previous experience! Both 1-41 and 1-61 are positive numbers

a14 we knOW how to add pO's-IV.,ive nutbei-s. The sum 4( 1'41! t. 1-61) is the.nega-
1 - r

Of the sum of two positive numbers, and we know how to find that. Thus,

tie have succeeded in expressing the sum of -two negative numbers.. Prior to
/.

'this weilid just a picture on the nwebei line for thissum.
f

think through (-2) + (-3) for yourself, and see that by the same reason-
!

,--41i4s.,..--'magrnrOlvarrive.dcb.).-,, -.s,

From these
4

positive numbers

(-2) + (-3) = -(1-21 + 1-31) = -(2 + 3) '=
-q.

examples we see that the following.defines.the sum of two

in terms of operations which we already knata how tp ao.
I r S _ . t 1 a. - 4 .4 1 1 .

The sum of two negative numbers is negative; the

absolute value of'this sum'is,the sum of the absolute

values of the numbers.

In general, this statament\becomes:

If.aand b.are both negative numbers, then:

a +b-= 41a1 + Ibi) .

rC
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So far; we have csnisiotered the sum of two non-negative numbers, and the

sum of two negative numbers. Next we consider the sum of two numbers, one .of

viaih is positive, and the other negative.

If we refer back to Trials III, IV and V, we note that the direction of

the deflections was reversed. This suggests the operation of finding thef
r difference between two numbers of arithmetic. We can verify that

T.) (-7) + 10 = 10 + (-7) = 3. We get the same result if we take the difference

between the absolute values of these numbers and compare the order of their

ab--sorut values. In this case, 1101 > 1-71 and, therefore, the final result ..

'must 'be a positive number. So;

r?

.,

-(7) + 10 = 1101 - 1-71 = 10 - 7 = 3

On the other hand, had we chosen to find the sum, 3 + (1), this is thesame

as (-8) + 3 or -5 . Again we have taken the difference between the absolute

values of these numbers and compared the order of their absolute valUes. This

final result kaust be a negative number since 1,-81 > 'So,

3 + (-8) -(1-81'2- 131) = -(8 -3) = -5 '.
t

From this it appears that the sum of two numbers, one positive end the other

F

negative is obtained as follows:

The absolute value of the sum is the difference

between the absolute values of the numbers.

(a) The sum is 0 if the positiye and

negative numbers have the same

..410 abediute value.

If a > 0 and b < 0 and lal = Ibl, then

a + b = (la' - Ibl) = 0

(b') The sum is poSitive if the positive
,

-uMber- hat the greater absolute -value-.

That is if a >,0 and b < 0.and lal > Ibl,

then,
°
a + b = lal Ibl

(c) The sum is- negative if the negative number

has the greater absolute, value.

a> 0 and b< 0 and lal < 10, then

) a + b = -(1b1 - lap

U0



Exercise

1. Perform the indicated additions on real numbers, using the number line

tslaid you'.

(a) (-6) (r7) (f)

(b) (7) 4-(,-6)

(e) (-9) 4(5) (4)

(d) 6 + (-4) (0

(e). ( -8).+ (8). (j)

(25) (-73)

2-
1

-F.

2. Tell in Your own words what you do ta the two given numbers to find
. ,

their sum.
1

I
.

(a) 7 t 10

(b) 7 14- (-10}

(c) 10 +,-(-7)

(d) ( -10) ,-1- (-7) ;

.(e) 10 + 0

3. In each of the following,'finsl the sum, first according to the defini-

tion, and then by any other)iethod you find convenient.'
?

(a) (-5.).+ 3 (e) 18 + (-14)

(b) (-1,1) +(-5) (f) 12 + 7.4

3 ) +40 (g) (-
b .

,(d) 2 + (h) + (-65)s,

. In the colSO0of 6 week'te vailAtions in mean:tenperature from the

seasonal normal,of 71 were -7, 2,'-3, 0, 9, 12, -6. What were they

mean tenperatures each da/ What, is the sum of their variations?

1.8 The Real Number Plane

We have talked about a coordinate system on a number line, such that
It

evety real number is associated with exactly one pOini Of the line. Now let

us drew two number lines which are perpendicular to each other. It is not

necessary that these two number lines be perpendicular to each other, but

this is the type Of-coordinate system in a plane which we, are most likely

24
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to see and use. Since the number lines are perpendicular toleach other,

'will call this a rectangular coordinate system.

We will.takethe intersection of these two lines as the origin of the

coordinate systems of both lines. Each number line is called an axis. We

_call the axis Which extends across the paper the horizontal axis and the

other axis the vertical axis. The plane determined by tAse two axes-is

called the coordinate plane. Let us agree to place the unit point on the -
- 7

horizontal axis to the right of the origin and the unit point on the vertical

axis above the origin. 'Coordilates may now be assigned to all points on

each axis (Figure 20). A t

we

A

3

2

1

4
-1 -3 -2 -1'

0

. -1
_

-2

-3

1 2 3

Figure 20

Consider a particular point, such as Ct; (Figure 21a)

ti

and suppose that a,

vertical line through Q cuis.the horizontal axis in the pc nt whose coordinate

is 3. .

.

I +

/
1,

I e t t 1 .
-1 0 1 2 3 4 x

Figure 21

5

(b)



F-

Let us also suppose that a horizontal line through Q cuts the vertical axis,

in the point whose vertical coordinate is 2 (Figure21b). We can usg this

information to define a coordinate system in the coordinate' plane. Wesay

that point.Q has a horizontal coordinatt of 3 and a vertical coordinate of

2. Any point on the coordinate plane can be located if we knoW its coordin-,

ates. Each point has a pair of numbers associated with it. The order in

which we write these nuMbers is important. We write these placing the number'

found along the horizontal line first, and the one found along the vertical.

line second and enclosing them in parentheses. We have assigned to Q a first

number; 3, and a second number, 2, and we think'of these as an ordered pair

of numbers, (3,2), belonging to Q and called' the coordinates of Q.

`q,

In describing the location of a point in the coordinate plane, it is con-

venient to specify the portiOn Of the plane in WhichAt4ies. The horizontal

axis and the vertical axis divide the plane into four regions. Each of these

regions is called a quadrant. The first quadrant is the, set'of all points whose

horizontal and vertical coordinates are both positive. The second quadrant is
,

the set of all points whose horizontal coordinate is negative and whose ver-

tical coordinate is positive. The third quadrant is the aet of all points,

whose horizontal coordinate and vertical coordinate are both negatiVt. The

fourth quadrant is the set of all points whose horizontal coordinate is posiT

tive.and whose vertical' coordinate is negative. We denote these quadrants by

I, II, III, IV (Figure,22).

L 4'

ot

Figure 22
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If both_ of thkcpordinates are zero, the *int is the origin.If the horizon-

tal coordinate is zero and the vertical coordinate is positive, we say that

the point is on the positive vertical axis,ebut if the vertical coordinate is

negative, the point is on the negative vertical axis. In a similar manner,

if the horizontal coordinate is positive and the vertical coordinateris zero,

the point is on the positive horizontal axis; with horizontal, coordinate nega-

tive, vertical coordinate zero tells us that the point is on the negative

horizontal axis.

&ample: Plot on a coordinate plane the following set of points:

(-,0), (-4,3)). Statehe quadrant in

Vhich each point fella.

y

Figure 23

0%
u.

Exercise 6

. ... ,4 , .- ..I ,
,...,,

1. Plot the lowing ordered pairs of numbers; write the number of the

quadrant yr the position on an axis *in which-you find the point repre-

o

tented by each of these ordered pairs.

1(a) (3,5)
(g)

( -3 ; -1)

(b) (-5,1) (h) (7,"a)

(c) (1,4) (i) (8,.6)

4d) (j) (3,-2)

(e) (0,0) 00 (-3,-5)

(f) (0',5), (-:1,43)

27C)

(m) (2,-4)

(n) 45,2)

(0) (-3,0)'

(p) (-4,-5)

(q) (-1,2)

(r) (3,71}



2. (a) Plot on a coordinate plane the following_set of points:

((OM, (-1,0), (-2,0), (2,0), ( -3,0), (3,0));

(b) Doan the points in this set seem to lie on the sane line?

(c) What'do you notice about the vertical, coordinate for ,each

of the point's?

3, (a) Plot the points in the following set.

((0,0), (0,-1), (0,1), (o, -2), (0,2), (o, -3), (0,3)r.

(b) Do'all the points named in this set seem to be on the same

line?

(c) What do you notice about the horizontal coordinate for each

of the points?

_4.. (a) Plot the points in the following set.

((0,14g5(1,6), (2;4), (3,2), (4,o)).,

(b) Do all the points named in this set seem to lie on the same

line?

1.9 Summary

° In this chapter we used a "Loaded Beam" to develop the negative number9.

The experimental results gave us an intuitive understanding of absolute value

and the addition of real nuMbers. _ The tuMbei line, was extended .to include the

negative numbers and used as an aid in addition, The =Ober line was also

used to extend the propeArty.of ordering for all real numbers.

Finally, we moved from a coordinate system on. a nuMbee,line to the real,

number plane. _A coordinate system_for.the plane-was developed and we.learhed

to associate ordered Pairs of numbers with points on the plane.

28
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Chapter 2

AN-1EXPERIMENTAL APPROACH ,T0 LINEAR FUNCTIONS

2:I7getit:tumli-e'r Gerie-rator

The previous experiment with the loaded beam made it possible to

"generate" the real numbers. Now we want
.
to construct,a "simple" real num7.

ber getterator whit' we cau u:c to demonstrate more properties of the real
-'';=' -'11;

-.
L \

P. number system. This device will make it possible to "turn" a real number.

Take a one-foot piece of -f - inch threaded rod with a fitting hex nut
4

and washer. Glue the washer to the hex nut and thread 4e combination on

the rod. Support the rod with two transparent tape holders and modeling
clay, as shown in Figure 1.

z.

Figure 1
17.

The "indicator" is the washer glued to the hex nut. Place masking taPe

'on the faces of the hex nut. Move the indicator by rotating4t until it ie

in the approximate center of the ruler and one face of the hexnut is in a

level position. Mark this face of the nut with the numeral zero. Make a

mark on the ruler opposite the.edge of the washer and label it with the num-

eral zero also. The mark on the ruler should be located ever} with ,the plain,
ee

face of the nut-washer combination (Figure 2a).. We have arbitrarily chosen

both the point and the face for zeros.

) RULER o-

r

(a;
INDICATOR

Figure 2
a

9

(b)

e

'

4'

I g



t

dr.

A
Now rotate the indicator halfway (to the third face following the one marked

zero/Yr:1nd mark this face,-

2
kFigure2b). Now as you rotate the indicator you

# 1 ,

" 1
can see that each face represents of a.turn. Each full rotailon of the

indicator could be chosen as our arbitrary unit 9f displacement. However,

this unit would be very small so let us choose ten turns to equal-one unit.

-This will give us a decimpl system similar to our monetary system and the

metric system. .Since there are six faces in Bach turn and ten turns to the

unit, there are sixty faces to one
e
unit.

s,

(6 fa&
) x

X10 ns)

1 turn 1 it

(6 faceS

1 turn x. knit

(6 faces) (10 turns) .

'1 unit 1 turn /

(

6 face
/

)
x (10).

60 faces
1 unit 1 unit

,

This should remind us of the way in which we count time by sixties (i.e.,

Sixty seconds is one minute or sixty minutes is one hatr).

'Begin at zero and move the indicator tb the right. Each time you com-

plete ten turns, and the face of the hex nut marked zero is on top, mark the

ruler as before. After you reach the support at the end return to zervand

move the indicator,in the sable manner to the left. After you have marked off

units to the left of zero, return the indicator to zero. Now label the marks .

to the right of zero with positive integers (1, 2, 3, ...) an the marks to

the left of zero with the negativelintegers (-1, -2, -3, . . We now have

the scale4rked with the, integers as in Figure 3 -3$ -2, -1, 0, 1, 2,

3J
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(The following material-gaS omitted from the text. It follows page 30.)

a

The marked rider is the physical model o' our number line. The

indicator on the threaded rod makes, it pos .able to "turn" or generate
. .... .

\

numbers. Since ten ,turns of the indicator generates our unit, one Ainit
_ . 4

to the'right is 1 and one unit to the left is -1. Then one turn-of the
, .

1
indicator to the right generates 0.1 or

1-6
which is a positive -Viitional

. .

number, One4ialf turn-on-the indidator to the left from zero generates

.:0.05 or -. -1-,:./4111.cb $7a negative rational number. A sixth of a turni
, - -

20
1

(one faeeon,theunit).tothe r'ight of zero willenerate 6.0i
. .

or

0.01'666., . .
,

, .

Turirthe indicator 12 turns to the right:ant7find what ration6Y
3 .

. - -,

number is genefated. Wp discover that it is between 1 (ten.turns) and

2 (twenty tuins): Since two turns is 0.2 and

,
2 6 faces

is 4 faces
3 1 turn

our rational numbers coyco d be 1 + 1/5 -1-'4(1/60) or ,e repres
;., .

1 + 0.2 + 4(0.01666,-). This same number can be represented as
12

. 15

(Check the arithmetic yourself.)

Exercise 1

1. How many turns of the indicator are necessary to generate the,following

,numbers?

a) 3

b) -4

c) 1.4 e) 5.45.
1

d) -2.8 0
3

2. How many face changes of the heX nut from the zero poivt, will generate

the folloWIng numbers?

. a) 2 e)
12

11
) -3'

A.

f).-.4.15

or -2-6
11 g) 2 .

5

'11-1/it numbers would be 'generated bj)v the folio hg numbeANof turns of the
No

indicator?,
t

a) Right 35 c) Riga 95

b), L,ef t, ,15. -J7rv'w cl -; .Left

3 g,4;,,.

t
17,2

3



What numbers would be generated by the following number of face changes

'i'rOn.,te'zero position?

(a) .Right 90

(b) ,Left .45

"(e) Left. 256

(d). Right 156,

(e) Left 512,

(f) Right'316

2.2 ,Functions and Relations 0

7 ) r
We can continue to.-pertgrm-the experiment. There is a correspondence

.between the numbers on the scale and either the number of turns of the indi-

titbi'Cr the 'lumber of face ,changes. Lei-us consider aset of ordered pairs

such that any first element of an ordered pair As the displacement from the

,Zero point, and any second clement in an ordered pair i§ the number of'turns

of t. indicator which generated the displacement. Let S represent'an ele-

of the first set, and T an element of the second set. The ordered pairs

T) represent our correspondence. The zero point on the scale corresponds

to the zero mark on the indicator and (0,0)'represents this correspondence.

We already have many other ordered pairs from the previous diicussion;,such

at (1,10), ( 1 10) (-1- 2-9 and (12. 22) ! -Find six other ordered pairs
.7 20,,, 2 15' 3

and plot them all on coordinate graph paper. ,Label thd'horizontal axis, S,

and the vertical axis,. T.

You will notice that the.set Hof points plotted on the graph paper are

arrange In such a way that they suggest straight lines. In fact, they"ap-
.

year to be a pair bf straight lines meeting it the origin. Draw the%lines

that beat fit your data. l$ow we have another physical model of our corres-

pcindence.

1

ZOnce.,wa)hava,decided,to depart from the experimental "facts" and draw

,straighllines to represent our data, we have,a grapho'similar.to l'igure 4.

4

SIT

S .

Fire it
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-

Such a graph exhibits a "relation" bet;leen the numbers S and the ntimber

of turn T. In all relations there are three essential features: a domain'
-1..

a range and some "rule which will, tell us when an element of the.domainand
0,

an element of the range satisfy the relatioq. This "rule" does not have to .

be a simple algebraic expression. It sometimes can be only a list of arbitrary

pairings with no underlying pattern. In Mc', We define .a relation to be a

set of ordered pairs. The set of all the ,first elements in the ordered pairs.

of the relation Is called the doinain-of:r-relation and the set of all the

second elements is called the rah*?
,

.
.....

' In an experimental setting; the domain is usually limited by the physical

arrangement ,df the experiment, e.g., in the previous chapter thedamount of

W
p. load,' we could hang on the beam and in this experiment by the length of the

threaded rod. Once the domain had been fixed,'we then deterMine the rage
...t.. .

experidentally. Wip the Ad ofoir,wpb we can search for a connecting link
kF___-.1.,

betwe n the domain and the range. if-we can find such a connection, we may

be le to use it to "generate" elements of the range which correspond to

given elemepts in the domain.

In the graph of the relation Yhich we found in the number generator ex..:
4 A

periment (Figure 4) we can see an important feature. Each element of the

domain has assoCIated'with it exactly one element.of the range. Td be spec-,
ific, for every number on the scale there is only'one numbes representing

the number of turns of the indicator. This type of-relation is ofabecial _-

importance in mathematics. It is called a function. A relation is a function

if for each first element in.the ordered pairs there exists exactly one second

element.

Our investigation has shown us that what we really have is a functional

relation whose domain is all numbers from the scale used in the experiment,
ce

and whose range is the number of turns from zero. When we dray a continuous

line on our graph, we are expressing the idea of continuity of the relation.
,

Now the question is whether or not the graph is actually a representation

sjg! the functional relation. We can answer the question in the affigative if

we can satisfy ourselves op just one more point. Does the graph show that,
4.

each element in the domain has exactly one element in the range related to it?
,%

To,answer this question, We must leard hod-td find the related elements
1

of the range if we are given'elements of the domain. We shall illustrate thip

procedure with an example. Figure 5 shows a stwightline grapU.



-/
Figure 5

As you know, any point on this line can be represented by an ordered

=,,,,V, pair .xy) ,which exOesses ix horizontal anrileitical coordinates, respec-
,

liti71.5r, ot that point.* We take some poi on the x-aXis and from this point

Araw ('or imagine) a vertical.line. We now examine this line to determine -.

. -how many intersections it has with the graph. At each point of intersection

. - with the graph we eve an ordered pair of the relation. If the line inter-

sects the gra exactly one point, wp know that that particular element

In the domain 1s exactly one element in the range related to it. If every '

possible vent nal line drawn from the elements in the domain intersects -the
.. , ., .

. '....""

0'

graph in one point, then every element in the domain has exactly one

eiemeni in the range related to it and this relation is g function....a*,

.
1

.,. .. Suppose we I tre given the point whose x-coordinate is.3 and we wish to

find the related y-coordinate. Draw the'vertical line whose x-coordinate

0:4,
- ',. ---, ,-4 -

. As 3and consider the point at which this line intersects the grai3h. From

,e_this point of intersection we draw a horizontaLline, extending it, ifiturn,

N,:-4--.

7-, _until it meets the y-axis. The value of y at this last point is the value

related to x = 3. The sequenge, of.steps is shown in Figure 5 by dashed' lines

,--,-.-- and arrowhtads. We note from Figure 5-t,hat for x = 3 Vie get Y,= 4. -Thus,

te 4
the ordered pair (represented by the point Q in the figure) Is <3)14 and we

-

..
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have found the unique element of the range whiCh is related to a given element

of the domain.

Now let us apply this procedure in getting an answer to the questions we

posed. Is the graph of Figure 4 the graph of a function? The elements of

the domain of our scale-turns relation are plotted on the S axis (horizontal).

and the elements of the range on the T axis (vertical). Start with any point

on the horizontal axis and from it draw a vertical line to the graph. _From

.the point of intersection drali a horizontal line to theyesjteal axis. Clearly,

any vertical line you could draw intersects the graph at only one point and,

therefore, any value in the domain has, related to it a singles value in the

range. Thus, the graph represents the functional relation. (See Figure 6.)

T

Figure 6

S

2.3 The Face-Scale Relation

Let us collect another.set of ordered pairs from the number generator.

For this set of ordered pairs, we will let the first, element be the number of
0/

--fate-changes--f-rom the zero. position an0,the
second'4element

be the correspond--,
0

. ing number on the scale. _Let us represent such an ordered-pair by (F,S) where .

F is the number of face,ichanges, and S is the number on the scale. The ordered

c

pair (0,0 and the pair (60,1) are both in this set of ordered pairs. Find

eight members of this new set. Graph' this set of ordered pairs. Label the
-

horizontal axis F and the vertical axis S. Your graph will look something

like Figure 7.



a

S

I III I I- t t t I
F

I,

Figure 7 ..,

,-? .
-4

.

Just as before, we can connect these points by straight lime. Every

.,,,i-real. number S ean be obtained by some (possibly fractional) number of face

v-c
changes. Ibus,the graph of this relation will be simiiii to the graph shown

,n-Figure 8. Is this the graph of a.function? Let us applythe test dis-

-cussed in the last section and see. Start with any pointin the domain ands

traw.a vertical line to the graph.

Figure 8 )

.

You find two points of intersection and now you must draif taro horizontal lines

to the vertical axis. This means that this value in the dome has two values.

in the range related with it. Thus, the graph of this :341ation does not

I3
'*1

O



represent a function.

TO summarize, the experiment shows that the'numbers on the scale:and TWAT

ber of turns of the threaded rod form a functional relation. Moreover, the ,

domain includes all numbers between the largest_and smallest marked on the

ruler. The range includes zero and all positive numbers. There are no breaks

in the graph; hence, we say the function is continuous. The numbed of face

changes from a fixed position and numbers on.tfie scale, form a relation which

is not a function,

' 1. Which of the

function?
4

Examples:

2

'1

Cj

Exerclae 2

graphs of the relatio4s shown below is the graph of a

(a)

5

2 not a function
1

12

(2)

4¢4

36.

3 -.1-

(b)

2

1

not a. func.

1234

(3)
j

r

(d)

-d

4
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2. Graph the ordered pairs given below, state the domain and range, and

tell if the relation is a function.

Example:--((0,0), (1,2), (2,4), (3,6))

6

5

21
0 1 f 1-0'01 2 3 4

(a)

(b)

(c) ((-1, .), (-1,2), (-4,-6), (-4,6))

(d) (A ..(ir:k))

(e) ((-t, 5), (-.3g-, 5), (2,10), (-2, 10))

((1,2), (-1,2), (-2,4)1 (2,4))

(4,3), (1,-3), (3,9), (3,,-9))

34.

I

Domain (0, 1, 2, 3)
Range (0, 2, 4, 6)
Relation is a function

Oiscrete)



2.4 Seesaw Experiment and Multiplication of Numbers

In SectiOn 1.7 you studied the addition of real numbers and leariled the

meaning of such phrases as (-3) + (-2) and (2) + (-4). In the next.few sec-
,

tions we will be faced with the problem of multiplicatibn. All we can bay

at present is that we know how to multiply two non-negative numbers.

We will use a simple "seesaw" to illustrate multiplication and to pro-

vide us with an intuitive feeling for such products as

(-2)(3); (2)(-3); (-2)(L3)

Our experimental setup is shown in Figure 9.

Figure 9

The apparatus consists of a balanc; support, a knife -edge clamp, and a P

meter st k. You may be familiar with this type of equipment as it is used

in a s endecladsroom in studying equilibrium and lever action. The knife,

edge cla acts as a point of rotation (fulcrum). The knife edge should beN14

adjusted on the meter stick so that.the stick balances in a horizontal_posi-

tion.N,,The same arrangement can be Constructed by using a triangular block of

wood as a support for the meter stick.

If a force is applied to either arm, the meter stick will begiri to tip.

Force can be applied by hanging a weight from the meter'aticktor using a

pulley arrangement to Change the'direction of the forde. The sketch below

shows a set of forces acting on a balanced meter stick (Figure 10).

38



Figure 10

A force like F
2

or F
3
tends to rotate the lever,about the fulcrum in a

.

clockwise direction. F
1

and F
4'

however, tend to rotate it in the counter- :
/-
1

clockwise direction.

The sense of rotation connected, with a-force and lever can be.?used to
1

developIthe'Multiplication of real numbers. Together, the lever,end forte

form a "force multiplier". A given force can accomplish a great deal if it

is applied through a long arm. A pipe wrench is a familiar example. One

does not expect to be able to tighte a nut with his fingeia. The wrench

provides a lever arm through-which he force can act; it multiplies the

effect of the force. F011oWing this reasoning we define the moment of q

force as la product:

a (arm) x F (force) = L (lint of force)

pl,where a is-the distance between the point of application of the force and"

the fulcrum.

If'we suspend a one-pound weight at a distance of two feet from the

fulcrum, the turning moment is 2 ft-lb. The units' connected with moment of

force are formed by taking the product of the force,,units and length units:

This procedure is not new. We are familiar with the process of "multiplying"

two lengths to form length squared which is the unit of area. Id our present

system the unit of moment of force is the foot-pound.(ft-lb).

39
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Clearly] the senag0 the moment aoes not depend on the weight used.

Also, changing the length of the

art: will not change the sense of

the - moment. To Alter the sense

of the moment, we must reverse

the direction of the force (by

pulling up on the arm, or by in-

troducing a pulley) or apply the

forde from,the opposite side of

the fulcrum. To take account of

1 ft

2 pounds '

Figure 11

these considerations, we can make an analogy between forces and arms and the

vertical and horizontal axes of the coordinate plane (Figure 12).

0

AF ...-..

3
. P

.1

(

. .
a
1

, .7.,........

..... .,,. ..
,

.

. a

) 4 a22 .---4
,, ,,

,Y
2

ft

.

4

. 0 .

..

o ,

.

n

0
Figure 12

If we use the,same sign convention used in plotting points,,upward forces

like F
1

and F
3

will be positive, and those actingin a downward direction like .,
F2 and F4 will be negative. Again, as i44arawing,graphs, we consider dis-

tances to the right of the origin (fulcrum) to be positive, and distances to
9

the left of the origin to be negative. Nis, he arms al and a2 are positive,

while'a and a,. are negative.
9

3 4'

40
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In Figufe,f2 a force, F1, acts upwards (positive) at a distance a to

the fight of the fulcrum (positive). This has a tendency to give he ter
a counterclockwise rotation. The product of p positive force and a positi4e

arm sbould.give a positive number which we call a positive moment.

,t ( + ) , ( + ( + - ,

If now consider F4 we see that it is a negative.force, and its arm

ee4 is also negative. The effect produced by this'combination.is, however,

a counterclockwise rotation which we have just called a positive moment.

Thus,
ce

( ) ( ) = ( + )

This last statement,-if it can be applied"to numbers, indicates that the

product of two negative numbers is a positive number. You must remember, how-.

ever,- that this is not a proof for a statement about numbprs. We have only

shown that we can find an intuitivy interpretation for the product of two

negatives:

It is left to the student to satisfy himself thatconsiderationaf F,

and a gives

( ) ( + ) = )

and 9f F3 and a3 gives

( + ) - ( ) = ( - )

Our sign convention for the seesaw can be summarized by the following

--n figure.

OiAI

Force
: Arm

. .

4

C

Figure 13
,

Now -let us try'to seef these same results can be obtained by using some'

of the facts we know about numbers. If a, brand c are any numbers of arith-

natio, then'



et (a)(b) = (b)(0.

(a)(1) = (a)

(a)(0) = (0)

(a)(b + c) = ab + ac

Whatever meaning we give to the product of two real numbers must agree

with the products which we already have'for non-negative real numbers. The

above properties of multiplication which held for the numbers of arithmetic

must still hold for all real numbers. We can test the'product of
4
a positive

number and a negative number with the following example:

0 ( 3 ) ( )

0 = (3)(2 '4. .(- 2 ))

o = (3)"(,?) + C3)(-2)

0 = 6 + (3)( -2)

by writing 0 = 2 + (-2). (Notice
how this, numbef intioduces.a neg-
ative number into,the discussion.)

if the distribUtive.property is to -
hold for real numbers.

since (3)(2) = 6 .

We know from our study of addition that the number which yields 0 when added

to 6 is the number -6. Therefore, if the properties of numbers are expected

to hold, (3)(-2) must be equal to -6.

Next, we take a dimilar course to investigate the product of two nega-

tive numbers.
. ,

0 = ( -2)(0 if the multiplicationProperty,of
0 is. to hold.for real numbers.

.0 =,-2) 3 (-3)) by writing 0 = 3 + (-3). .

0 = (-2)(3 + (-2)(-3) if distributive property,ie to .

hold for real numbers.
f

O.= (-6) + (-2)(.:3) if tlii;commu tive.property is to
-

hold for red umbOs'y then .

(-2)(3) -21: But/the result

A of, the previous problem, was - '

(3)(-2) =.. `-6 . 4;

/ tc,/, .
iE .' N.,Now we have come to a point where (-2)(-3)-must be tile opposite of,-6.6Tta,

$

, '. 'ord6
.,-

number which must be added .c, -6 to yield zero is the number 6. Hence',61DE. . . .e
we want the properties of multiplicatioh to hold for real nuthers,,then 300 Q'

. ., ., ,t . -, r . , a
(-,2)(-3) must be ''(D "Could the same argument be used with any pair of ne -

i If ' '

i'-"' ' --''sitive numberd? .,

-

42
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43xereise 3

Fill in the blanki:

(a) the product of 'two positive numbers is a

The.produet of two negative numbers_is a

, number.

number.

(c) The. product of a negative and a positive number is

()'The product of a real number and 0 is

Calculate the following:

(a) (-

(b) ((- 4)(2)? (-5) (Y",

(c) CI 42)(45))..

(d). (-3)(4) (-3)(7):'-

(e) (-3) ((-4) ,1

Find the values

x
+ 7y(a

(b 3(-x) C(--4)Y 4 7(1),)

(c) x2:+ 2(xa).+ a2

(d) + it)2

(e) x2 + (31a1 + (--4)1,0\)

(f) + 21 + (-5) 1(-3)

ofrthe

a

(f) (-3) (4) + 7

(g) 1-4(-4) 7

(h) 1311;21 (-6).

O./ (-3)(111. (-9).-

(j)
(-3)(1-21 + (-6))

Humber.-

.

(k) (-0,5) (1- 1.31+

following for y re 3, a =

\

2.5 "AOpe

You may

one point to

of the other.

L

g

recall from your s -(udy of the number line that the distance from

another is the coordinate of the one Pointminus the coordinate
4

0 1 2 3 4 5, \ 6 7, .8 9

Figure 14
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\ V
';- For example, the distance between the iloints whose coordinate are 2

lelf t

.\ ' and 7 is 7 -_ 2.or 5:k
i

ure 14). If the pointa are not on the n ber line,
n el t.

questionbut are points on the co rd ate plane, the question of findi the distance

between these points becomes,,JRA mo,re complibqed. There ar some cases,
i

however,which are not too diffic t to deisitmine.

I
1...

A horizontal line in the .coordinate pl ne is defined s a ine whose .
s:

..

points are ordered_pairsyiththeeTe7teecdd element. the line illustrated,

in Figure 15 is an example of a horizont ine. What

(1,2) (3,2) (7,2)

Figure 15

is the di5tance he-

tween the o pointsaOse coordid-

ates.are 3,2) and (7,2)? Let tis

fine e distance on a howizontal

line s the first element of one

Ordered ')air subtracted from the

first e ement of the other ordeiqd
,

pair; that is, 7- 3. Therefore,

in th, s example, the distance be-

tweq the two points is 4.

A vertical lineviw the coordinate pla e.is defined as a line whose points

are ordered pairs with the same first el ent. The distance between any two
1

points on a vertical lide is the second element -of one ordered pair subtracted.

froth the second elementlof the, other ordered pair. It follows, then, that

-

(3,1)

Figure.16

the distance between the points

whose coordinates are (3,1) and

( ,5) is 5 1 or 4 (Figure.

If two points have coordinates

such that the first elements of

each are differentAend the second

elements a'e also different, then:

the line dkawn through %hese points

is neither..horiaontarnor vertical.

The ordered pairs' (2i3.) and (7,4)

determine such a ine. As we scan

this line (Figur 17) from left td !.

right, we notice hat it slopes up.

'We might ask,_at_tb1Atime, if there,.

is any way to compare the "steepnesk

of the slope of such Lines which are

neither horizontal'nor vertical.

44
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4

(2,3)

(7)4).

Figure 17'

C

If we draw a°horizontal line

through the points whose-coordin-
,

ates are (2,3) and a0vertreal

through the oteeepoint, we have

two hew lines which intersect at V4

a new point. This pOint isa point
QL.

of a vertical line which passes

through the'pOint (7,9 (Figire 18

By derinitionlOofa vertical line,

the horizontal coordinate of this

)

new point is 7. This point is also

0 a point of a horizontal line, which,'

1.),7 definition, must have a verticks

coordinate of 3. Therefore, the

7,4)4 Coordinates of this new point are

The distance; on the vertical

line, between the points (7,4) and

(7,3) is 4 3 = 1. This vertical

Figure, 18 0 distance 4s often referred to as

"rise ". The distance, on the horizontal line, between the points (2,3) and

(7,3).1s, 7 - 2 = 5. This horizontal distance is referred to as "run",

ratio'of the "rise" to the "run" is called the slope .of4a, line. .T6 slope
1

of the line in this example is 5.

Fo

slope w

The let

a:straight line the 'stedimeas" is the same all along the line. tile
11 be the same between any two points of the line which we might pick.

er m is usually used for the slope. Thus, for a straight line we have

rise
m = a constant .

run

Weisete that in finding the rise we subiracted,5 from 4. These mum-

bers were the second elements of the original ordered,pairs:which we uded tb

find the line. The run was determined by subtracting 2 from 7. These num- '

bers w94the first elements of the originq ordered pairs. From this it
-4*

ghat it is not actually necessary to draw in ths horizontal and veil',

.tical.lines through the points in'order to find the glOpa of the line.

H. ,

We have defined'theslope of a line .$yusingthe coordinates of two

distinct, points on the line. The slope of a given line does not depend on

-the particular pair of points used to determine the line, nor on the relative'

45.
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position of these two points. The examples below disles the Various possi-

bilitiesah4 show how the value of the slope not only tells the "steepness"

of the line

Each of the

Example 1:

but whether it rises or falls as we proceed from left to right.

examples shows
.11

a,general situation and .a specific example.

P2 (second point) is above and 'to the right of,P1 (first point).

-

Example

, .
A'- (-2)

m - ( -4) L.

6
=

3=

Figure 19

Slope is.poAitive, the line rises as we proceed from left to right.

: P2 is below and to the left of P1.

1.

,
'Figure 20-

-"

Slope is positive, the line rises as we proceed froiirleft to right`.

ti



is below and to., right, of P
1.
P.

i

Figure 21

Sfope is negative and the line "falls" as we proceed from left to

right.
:$

Exatple, P2 is above and to the left of P1.
1

4 - 0
m -7 - (-4)

4 n=
-3

4

(-7:0

(-4,o)

,,,re

Figtre 22

Slope is negative and the line "falls" as we proceed from left to

;right.

47
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P land P have thei same ertical cordinate.
1

f,

, 2

P
2 (-4,3) (3,3Y

r

Figure 23

Slope is zero, 14 is hOrizontal.
C

Example 6: P
1
and P

2
have same horizontal coordinate.

IN*

P
2

I.

,Figure 24

Slope.is undefined, line is vertical.'

. We may summarize- thepreceding results as follows:
,

44,

(3,2) P

(3,-4)

it. in .0,the...line_rises to the right,

If m <0, the lirie Calls to the right.

If -m = 0, the line is horizontal. f

If m.is undefined; the line is vertical:

o
=7
= 0

-4 - 2
m

*3 3
& -6
0

m undefined

(6.

p



'1-1.4

n.
Which of the faloving two

.a vertical line and a line

(a)! (3,2), (5,2)

(b) (0,0), (7,0)

(e) (10,4), (4,10)

(d) (5,6), (6,7)

(e) (2,8), (4,8)

Ekecise.4+

ordered pairs determine a horizontal line,

Which is neither?

(0 (2,3), (2,2)

'`fig) J561,10), (562,11)

(h) (3,31)06,28). -^

(i)° (9,8),- (9,1)

(0). (0,8), (0,5)

2. For each of the following two ordered pairs, state the rise

fqr the linedetermined by these points.

() (20), (4,8)

(b) (3,9), (2,1) '

(c) (8.5,7), (9,9)

(d) (20,10); (25,7)

'(e) (5,3), (5,986)

. .
.

2b6 Absolute Value and Relation . 7

We have already obtained experimentally from our number generator, a
'

..relation.between S (the numbers on the scale) and T (the number of turns.of

', the indicator). This relation:was displayed on coordinate papei as in Figure

25.1'we found it to be a function. Let us examine Aordered pairs again, lit,

,

Both (140) and (--- ---v are in tie Arst quadrant, while (-1,10)-and . .

, 19 3. - . .

1 1 35' 3
..-

(-
20--

-.) are in the second, quadrant. We will study these two quadrants.
. ', 2

- .

heparfftely. r. .
t.

..
.

.

J

and the run

0

(763,763), (25,25)
(8,7), (2,9)

(8,10, (0,10) -

(3.7, 12.6), (5.2, 2:1)

, : , ,

I
9

0.
S... a tr

: I .. y I
0 0

NW- ' .; -7 ..' r -01,-

4

495
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Figure

. . , ,

To describe the situation, we must limit our domaie. In the first case,

our domain will be the non-negative numbers and -then we hlive a linear function
i .

..
, ... ii:(4ilie 4.rat.- qiiadrEih. We call it linear because 811 point s' lie on the ,same

f.- ... .' . .

straight line (Figure 26a). If we .change our domain to the non-positive num-

bers,
_,., .

bers, we have a linear function in the decond quadrant (Figre2bb). User' .

. , ,', - t r .- r f----- 4.----77"- 7-4.- .;- 7 -; "s-,--- , , , .

your answers to Exercise 1 and form (5,T) *demi pairs. Check these ordered
.

' pairs i'ct be sure they lie
\
on one of these linear Tunctions. Only the ordered

pair-(40) lies on both.
,. :

4 .
. .

. ,

A

e

D
50
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/
he equation

(a)

Figure 26
(b)

The set of ordered pairs in the first quadrant all appear to satisfy

T = 10S.

Look, for example, at 41;10) and (g, .

We call (1) the linear ation for the graph of Figt.}.re 26(a).

The, ordered pairs in the second quadrant, for 1 (-1,10) and

(- satisfy the equation

T = 10S (,See, 26(b).)

(1)

(2)

In equation (2), the right -hand member, -10S, is equivalent to 10(-S). The;

domain of .this function, 'however, ip limited to the non 'positive real num-

hers. This means that -S is the negative _of__s negativ.number, or a posi-,
tive number. Recall from Chapter 1, the definition of absolute valde,

.

lal.= a if a >0
'AO

Ial .r."-a if a <0 -.-

Another way, then,.of saying -S, when S is non-positive, would be to say

ISI. tow our equ'ation can be rewritten

T = 10 ISL . (3)

This form of the equation alsoapplies to the first part of our example

-where the domain of-that part of the function was all non-negative real

numbers. -Since the absolute valUe of any non-negative number is that

-'same

number, the two equations T ios and T ='10 ISI say. exactly the

'iiame thing.

'4%.- .
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The advantage of our discussion
)
is that we now have a siAgle:equationA

. . .

over the domaiT,of all real numbers which completely describes the set ae
OrderSdIpairslin our;fuection. This Tunction is,oftenreferred to Eie an

i:absblute.valuelfunction:
,...

I Exercise 2

1. Check the' ordered pairs you obtained in the scale-turns relation to

see if they satisfy eitherq = 10S or'T = -10S. ,
a

.
s

2. Check the ordered pairs you obtained in the faces-scale relation to
1 1

see if they satisfy either S = F or S = -. F .

3. Graph each of the following. ,.

(a)

(b)

y = xl y = -2 Ix,

(e): y = 31-xl

-(c) = 5.1x1 (f) IYI =

2.7 Slope-Intercept Form

The vertical intercept of a line is the point on a line where the first

element of the. ordered pair is zero. This is the ordered pair (0,1)). Let

*us see how the vertical intercept and slope can help us to draw lines. Sup-

pose a line has a vertical intercept (0,6) and its slope is - 3 . Let us

draw the line as well as write its equation. lb draw the graph, we start

at the intercept ,(0,6). Then we use the slope to locate other points on the

line,,:.The_fec-t that the slope is negative tells us that the-tine Will fall
2

as we go to the right, and the number
3

tells us hoy "fast" the line falls.

If we take the. point whicAlt.know is on the line, (0,6), as one of two

points, we canind another point on the lies 3 units to the right and 2

units down, We now have4two points through which we may draw the'line
..-

(Figure 27) . "47
1
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slope=

!

verticalinteicept fib, ) 1

3

.1

4 Figure 27

Since the slope is the same for the entire linet any two points of the line

will giveUs the ,same ratio - . Take the vertical-intercept (0,6) and

another point (x,y) which lies .on the line, then the slope. is given

by the ratio

,y - 6 2
x - 0 3.

o
x

; -,,,
Multiplying both sides of this expression byA we, get

x(Z-L-t4--

x

gx .

6

V

3
. .

But - is the,same as 1, so ,ve can again rewrite to get
x

2
-

3 .--r

and, finally,

3

2
y = - -x o..

,

We can repeat this same proces with a line whose vertical intercept is
(0,b) and Whose slope is m. Let take anY point (x,y).on the line. Oince

the'slope is the same for the e ire line, any two points of the line will

give us the same ratio m. The slope is given by the ratio
, .

y b
x -

= m .
0 .

536 1
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This equation can be rewritten in the form
, .

y = mx + b .

,t IA leftto the student to verify that this last equation is corre
v

Except a vertical line, every straight line can be given an equation

Of this form. The equation

y = nx + b

was derived from our definition of slope and the statement that all.portions

of the line have the same slope. If we look more carefully at the derivation

of this equation, you will recall that we began with two ordered pairi, one

of which was of the form(O,b). This point has a special significance. This

is a point on the vertical axis. Since we have already said that this line

cannot be a vertical line, we know that it can cross the vertical axis at

exttly one point whose coordinates are (0,b). This point is referred to as

the "y-intercept". Looking again at the equation in this form, we notethat.

the factor m is the slope of the line and the term b gives'the intercept.

Hence; this form of the equation of a straight line is called the"slope- .

intercept" form.

Example: Draw the graph of the equation 2x -.3y = 18.

'Solution: This equation is not in the slope-intercept form. However, we can

solve the.above equation for y.

-3y = -2x + 18

y = x
f 3

, ,6 y
Once we have the equation in this

O

ford, we canTompare it with y =Mx + b
2

snd we see that the slope is
3

and the

vertical coordinate of the "y-intercept"

is -6. Our starting point 'is therefore

the point with coordinates (0,-6). The

slope is positive so thst

as we move to the right. The numerical

value of the slope (3) tells us that a

horizont'al change of 3 is associated with

a vertical change of 2. Starting with

the point (0,-6) we can easily find an-

other point 3 unitirto:the right ,and 2

units up (3,-4). Using thesA two points

'0,

Figure 28
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mey now dray the line.

' "1

II / . 7
1LS ,- 1 ; ,

,

)'

., , Calculate the sloPes Of lines 21; 22;
3

'./.
'

and ta Figure 29,

.-I using in each me the two points indicated on tile lines.
'Y

E5:ercise 6

2

S

P

- Figure 29

2. What is the slope of a horizontal axis? a vertical axis?

With reference to a set of coordinate axes, select the poidt (-6,-3),\%

and through this point

(a) thethe line whose slope is b. Wdat is an equation of this line?

(b) drall the aVhe through (-6,-3) which has a slope ofitero% What is

the -equation of this line?- 4

x

'

"N

4. Dtaw the following lines:

,(a) a line through -the point ( -1,5) with slope 22: .

(b) aline through the point (2,1) with slope - :

(c):a line.tlirough the point (3,4) with slope 0.

- 4a) a line through the point (-3,4) with slope 2.

(

- -
e) a line through the-point (-3,-4y.with slope undefined: What type

ofline has no defined slope?)

5.-- Consider the line containing the points (1,-1) and

Is tire point (-3,-9) on this line?

(3,3).

Hint: Determine the slope of the line containing (1,-1) and (3,3); then

determine the slope of the line containing (1,-1),and (13,-9).

4
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\....8. Verify that the slope of the line which contains the points ( -3,2) and
4

(3,4) is -1. If (x,y) is s point on :this'same,line, the slope could

be written as

Write an equation of each of the following lines:

a)
2

Tne
3
and the y-intercept number is -2::

(The y-intercept number is the vertical coordinate of the point-,

at which the line crosses the vertical axis. In this case the

coordinates of the intercept are (0,-2).)44

The slope is and the y-intercept number is 0.

The slope is 4
-2 and the y-intercept number is .

The slope is -7 and the y-intercept number is -5 .

7. What is the slope of the line containing the points (0,0) and (3,4)?

What is the 1r-intercept nuMbex Write the equation of the line.

y - 2
x - (-3)

or
y - (-4)

x-3

Show that both expressions for the slope give the same equation for

the line.

9. Write the equations of the lines through the following

Use the method of Problem 8.

(a) (0,3) and (=5,2)

(b) (5,8) and (0,-4)

(c) (O;-a and (-3;-'7)

(d) '''(5,-2) and (0,4

10. Graph each of the following:

(a)
3

5

(b) ey =

(c)

(e) (-3,3) and (6,0)

(f) (-3,3) and ( -5,3)

(-3,3) and (73,5)

(h) (4,2) and (-3,1)

(d) Y = Ix' t 5

) _7, 31. -

= 2Ix - 1

56
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2,48, St nary ,

In this chapter the "real number gerrator"was used to illustrate the

propertles rthe real numbers.'

A relation was defined glrg set of ordered pairs. The iet of all first

elements in the ordereepairs of the relation is called the domain of the

relation and the .set of all second elements, IS called the range. A function

is aPrelatiOn such that for each first element in the ordered pairs there, is

'exactly one second element.

The seesaw experiment was used to illUstrate the multiplicatiom,proper-

, 'tiesboy the real numbers: Awe,

(+ ) (-177 ) )

) ( ) = )

) = ) ( )

Slope, m, of a straight line was defined Ur Slope is positive

if.the line "rises" as we proceed from left to right. Slope is negative if

the line "falls" as we proceedfrom left to right. Slope As zero for a hor-
'1

-.--izontal-ling. The slope of a Vertical line is undefined.

The slope-,intercept form of the equation of a straight line,

was also developed.
*ow

y = mx + b

a

57)
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"' 3.1' - Introduction -P

In the previous chapter, linear relations were introduced through the
Ave

Number G'ene'rator Experiment. The ordered pairs which were obtained lay on la

--line because of the gay.in which they were generated. 'More often, the data

we obtain in an actual experiment will be scattered about somewhat. In this

:chapter we wish to discuss the way in which such data can be handled. We

will find-it'necessary to i roduce the concept of the ideal line ch will

best fit the data.

Only after this ideal line has been constructed can a mathematical

model of the experiment be developed. By looking at the physical systems we

cam often find new relations whisp,increase our understanding of the structure

of the mathematical systems.'

3.2 the Falling Sphere .

This experiment continues our discussion of linear,tunction. You have

probably learned in your study of scierite that all bodies take the same time

toffall any given distance in a vacuum. You know, however, than an iron ball

and a feather dropped simultaneously from the same height will not reach the

floor at the same time. Unless dropped in a vacuum, an object always en- '

counters some form of resistance exerted by the medium through which the ob-

ject-A;ls. In a fluid medium (a liquid or gas) this resistance is not con-

stant, but increases as the speed of the body increases. EVentually_a_point.

-is reached at which the upward resistive force equals the downward gravita-
z,

tional pull on the_object. From this point on the objtct will fall at a con-

stant speed.
t -or.

This steady speed is called the terminal Velocity. A man jumping Iran

a plane will reach a terminal velocity of about 120 miles per hour. A "sky

diver", with proper control of his body, can lower this figure to about 50

miles per hour. An opened parachute encounters a much greater resistance and

lowers pnets terminal velocity to a point of relative safety.
4

To investigate the phenomenon of terminal velocity, a small ball bearing

is allowed to fall through a thick fluid (Karo.syrup). \The ball bearing

reach its terminal velocity in the firdt few millimeters and then the ball,

i



will,cpntinue to fall gt a steady speed.

rff

As in all experbilentawe should think of all the possible variables we
.41

are likely to meet, and decide how to handle them. Since our investigation

will center around the speed at which the.ball falls through the flAid, we

must determine which of the variables will influence this speed. .

To test the influencelOf the size of the object upon the termi vel-

ocity, we could drop bearings.of different sizes into the same container

filled with the same liquid.

To test the effect of the,jar upon, the speed of the falling ball, we

could drop the same ball into different size containers filled with the same41
liquid.

To test the influence of the liquid. ieselfl We could drop ball bearings

o#' the same size into the container filled with different liquids.

If we,atice any difference in the terminal velocity of the ball in any

of these situations, then the factor that changed is a variable in which we are

interested. Can you think of any other variables'which may-influence the ex-

periment? Does the temperatureof the liquid influence the speed°of the ball

in the same way that it affects the speed of the hot,fudge moving off the top

of an ic cream sundae?

ce we have our list of variables, we must determine an e imental

procedure in which we can control th-luence of these v les upon the

terminal velocity. We will pick one and one quid and always have

the ball fall in the same portion of the jar,.

. The terminal velocity of the ball, however, cannot be measured directly.

What we must do is.to.1-1,:asure the distance the ball will,fall,during dame_

time interval. For example, to find the speed of an automobile we have to

knowthe distance traveled and the time taken to travel this distance.

In.this experiment we will use a metronome as a timing device, thus

providing an audible signal for selected time intervals. In*this date we

pick 'the time intervals, and the distances covered by .thejalling:objectwill

then depend oV these time intervals. We then have distance as a function of

time. In a later experiment we will reverse the roles of time and distance.

We will fix the distances and a stop watch will be used to find thecorres-

ponding times. Then time becomes a function ofedtptance.

.
'

To record the position of tbe.ball as it falls through the syrup,

fasten a thin paper tape to the side.of the cylinder with cellophane tape.

t
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1 /

1,1

gps-Figure,l. Drop a ball bearing into the cylinder so that it falls along

the Wall of the ,cylinder as close to 9ne tdge of the tape as possible. Since
)

/

the velocity of the ball will be quit small, only a little practice is

needed to pllow the path of the ball along the edge of the tape. Ag. Vie

ball moves along the tape, mark1a.yosition with a pencil each tiOe%rcu hear

the click of the metronome. The metronome should be adjusted to click every

- two seconds.

'

A small magnej will be necessary

to position the ball along the edge of

'the tape before relasing it. Hold the

magnet against the ()Aside of the glass
.40w.

cylinder and place the steel ball

against the dnside of the cylinder

net to the magnet. The pull of the

magnet will hold the ball in place

through the glass. When the magnet is

pulled aWayl, the ball will begin to

fall through the fluid.

The ball can be brought back up

through the fluid by,placing the magnet Figure I

against the outside of the cylinder closest to the ball resting on the bottom

of the cylinder. Raise the magnet slowly along the outside of the cylinder.

The ball will follow the magnet to the top of the cylinder.

11

You do not haveto mark the path of the ball for its entire fall. Ten

position marks' taken at two-second intervals will be sufficient for each trial.

At least four separate trials of the experiment should be made, using d new ,

tape for each trial. Mark each trial number on the tape and indicate,which

end of the tape was at the top of the cylinder%°

It, is not necessary to'make the first mark in the same place each time.
. .....-.....

This first mark pis taken to be the position of the ball at "zero" seconds,

(I"
.

the second mark, the position at the end of two seconds, etc.
, ,

3.1 TabulatingData ;

0 After completing the four ials,
.

fasten each tape in turn to a centi-
,

. . -
*

meter ruler so that the "zero" time coincides with ore of the ruler marks.
...

a

C7
4

%
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r
. .. ".:..%%...i.

Measure the distance in mill,imeters from the "zero" mark to. the first mark,

from the "zero" mark to the second, etc. (See Figure 2.)

.1

fil61 6d.411i-4\;14?%:;1;4.'ItiiI7tIll
0 1 Y\ SCeattheter

6

11 ti-

1 ..t

S , A r ...'
o

...

NecOtd the data for all four trials in a table of the form shown in Table 1.

,Figure 2

THE FALLING SPHERE EXPERLIETIT

,.... ,

Time
t

-(seconds)

.

Trial'l 1

. Distance
d

(millimeters)

Trial 2
)

Distance
d w

(inn)

Trial 3

Distance
d
(mm)

.

Trial' i

Distance
d

(mm)

-Average

Distance
(mm)

Guess

.

Avel'age

Distance
(mm)

Cale.

. _

,

.

.

,

Table 1

3.4 Analysis of Dita

I
.

f.the data'-is examined, we see that our table associates a certai4Q,3

value for the distance the ball has fallen (d) with a certain value of the

time (t). The table shows that 'there is a relationship between the tim4 and

the distance the ball has fallen% The value we obtain for the distance`de-

pends on thettne and, therefore; our data forms a set of ordered pairs. As
cs,

we have seen before, we can represent ordered pairs of numbers as poi,pta-' on the
.

coordinate plane. In doing the experl4gWe ffavedecided what time intervals
ri

to use, and the resulting distance the ball has fallen depended ok.this time

interval. The general practice is'to make the value of

/t

he variable that we

controlled the first element in the ordered pair. Thin, for this experiment,

, the first element in the ordeed pairs will be the time value, and the second-
1
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element will be'the distance associated With this time value. Our ordered

Pairs come (t,d) pairs. It will be helpful to label the horizontal axis

the time axis and the Vertical aids the distance axis.

j1 1
Wee are going:to use the graph' of.these ordered pairs for an analysis

of the behavior of the falling sphere, and it will be 4vantageous to have

the graph "fill" the paper as much as possible: We know that all ()four

points will fall in the first quadrant, because all of Out values for time

and distance are positive. Instead Of drawing the axes, as in Figure 3(01

we use the formsuggested in Figure 3(b).

time

/I
1r (a)

Figure 3

j
4 '

time

(b)

Now our data will nArcrowded into one, corder of the graph paper

Ind we can make finer divisions along the axes. The dist4ce scale should

be in millimeters, and the time scale in seconds. Once the dita is plotted,

you probably will have a graph which looks something like that in Figure,4.

d

O
O, 0

O

0 O

-O

Figure 4
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Once the scales have been set and the data plated; we have.. the problem

of interpreting the meaning of the space between-thlese points. In terms of

the physilal setting, we can argue that the space between adjacent ppints

should be "filled in". If we had decreased the time interval to one-tenth

of a second each time; instead of by two seconds, lie Would have found a new

distance reading for each time. EVen tho reading the change in position

for such a small time change wo d be .difficult, the sphere wild make a very

small change in its position for every time change. We now have to decide

how the position of the sphere would change with time. The variation is

ilobably quite regular with two-second intervals. ,There is no reason to suppose

that a regular variation of Position would'not occur between these points.

Our first guess aeto a model of the behavior of the sphere with respect to

(time would then be tojoin our expert=

mental points with straight line seg-
.

ments. This procedure will give us

something like the graph shown in

Figure 5.

Figure 5

This method of joining our ex-

perimental points is perhaps not the

most accurage model we can construct.

When we say that the sphere. behaves

exactly like our-experimental po nts,

we are saying that our readings are

exact. Can you think of any easons.,

for your data not being exact? This graph is also-the result of a single
,

trial of the experiment. Scientists and mathematicians do not like to gener-
.

'alize the results, of a single trial.

The errors of measurement'may be great

'enough to make the model obtained not

very meaningful.

I I

If we were to repeat the experi-

ment a number of times and graph the

data on'the same coordinate plane, you

would probably arrive at a figtre like
. -

that shown in Figure' 6. Thi's figure

shows us something about our ability

to reproduce the experiment.. Do we

obtain about the same ordered pairs a



second and third time? It also suggests that the "spread" of the plotted

points may be due,,to certain inaccuracies involved in the measurements. Per-

haps the platted "points" should not be points at all, but'small areas. We

are led- to the ConclusiOn that the results of an actual experiment, as can-

treated to those of an ideal experiment with perfect equipment and exact

measurenents, are_tvc different things. We have at this point a relationship

between distance and time in the form of a data table and in the form of a

-graph. What w desire now is the gigph which will explain the ideal behaviors

of the sphere. TheCdata from .each trial, and the braid arrangement of the
4r

data seem to suggest,a straight line. You probably cannot find a straight

line which will connect all the poifits for any one trial. However, with a

little practice, you should be able to find a line Which seems to4ebest"

/model

all o the data. This "best straight line" wilkpe our physical

model of a relation e have 'guessed". This line represents our model of an

ideal experiment.(S Figure 7.) 4

Once we have decided to depart fram the experimental "facts" and draw a

single straight line to represent ou4r data, we have a-graph similar to that

.;.n Figure 7. This graph gives a pictorial relation of time and distance.

Our problem now is to find a mathematical representation of this relation.

We now have a relation between time and distance in terms of tabular data and

a graph of this data. We have also formed a physical model to represent an

idealized version of this data. We now want to obtain a mathematical model,

Which will describe the position of the sphere in terms of the time. This is

our third step in the anllysis of the experiment'.

-,

Figure 7

.65
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3.5 Graphing the Experimental Data

The data you recgaded for all four trials should be graphed on a single

sheet of coordinate paper.

00
If you graph the "braid" arrangement discussed above, all of the points.

should fall in some fairly narrow band. (See Figure 8.) Do you think that if.

you were to repeat the experiment

under the same conditions that

your new points would fall within

this band?

1 e

We obtain a band rather than
.

a line because of the various .

/1

errors in measurement and the 'n-

-fluence-of variables other t 4 an,

distance and time. An analysis

Of the effects of these will be

restrved for a future course.

0
ca

time

PJ

There, are many straight lines.

we could select to represent an

idealized relationship between time 1 Figure 8

of fall and distance. No single straight line will connect all of the points

for any trial. With thought and care use a ruler to draw a line which you

thinks best represents all the data from all your trials. Your "best straight-

line" represents the model of an ideal experiment and becomes the physi"cal

model of the relation.

Remember to.ihclude the (0,0) point in.your line. The manner in which

we performed the experiment tells us that at "zero" time the ball has fallen

"zero" distance.. Thus, even though there are many lines to choose from,

every one of then should pass through the origin.,

We still have to'build a math erratical model of the physical relationship

shown in our "time-distance" graph. We tan do this by repeating the procedure

learned in the Number Generator Experiment. The slope should not be difficult,

to compute, for we know that the line must pass through the origin; hence, the

coordinates of the "y" intercept etre (0,0). The equation which describes the

motion of the falling sphere is therefore quite, simple. Calculate the slope,

1ijaing any two points on the line. Since the coordinates of the origin are

(0,0), this would be a convenient first point to use.
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Choose any. Orbitrary second'pZint dh'your line wiih.coordinates Follow-

ing the procedure used in Chapter 2,, we have

D - 0
T 0

m

Using tile value for the sldpe, the equation:relating time and distance in

the experiment becomes.

d =mt .

The slope in this experiment has a.special significance. The vertical

distance from the first point to the second lea number of millimeters, while'

the horizontal difference between these points is a number of seconds. The'

slope, defined as the ratio of these two differences, will be expressed in

units of millimeters/second. The value of the slope is defined as the measure
os,

e velocity-of the ball. Since we have found thatthe experiment yields

a straight line, the slope and, therefore, the velocity, is a constant., .0Ur

.initial- comments are thus confirmedby the time we begin taking data, the

ball has already.reached its terminal velocity and now falls, at a constant

rate.

Exercise 1

l.p Reproduce the "best straight line" you have drawn to represent the data

of this experiment on a clean sheet of coordinate paper. Take the four

.

piedes of paper tape used to mayk the position of the ball and arrange

then so that the zero marks are in line. On a clean fifth tape make a

mark to indicate a "zero" position and align this mark with the other

zero marks. The otherrmaXks on your tapes will not be "in line", but

INew tape,

i AFOU

should tend.to center in groups. ,Make a mark on the clean tape to in-

dicate your "guess" as to the position'which best represents each

vertical set of marks, 'Using the fifth tape as if it were, a new trial,

t
maxk'your measurements &the usual way, enter the detain yoUr table,

and graph the ordered,patrs. Do these pointd come closer to forming a

straight line than any of your four trial runs? How does this line cam-

pare\with the "best line" you drew from the "braid" arrangement?
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' 2. Froii the data of your four trials; find the average distance traveled 7

by the ball in each time interval. To do this, add the distance An

each row Of-the trials in Table 1 and,divide by the number of trials,.

Make a new column in your table, "Average Distance (mm)'; and now plot

average distance versus time on the same sheet of coordinate impel:

'10 used for Problep 1. -How close do these points come to forming a

straight line? You now have three lines on this (coordinate plane.

The first is the "best straight line" from your-original data, the

second is the,line obtained in Problem 1, and the third line is the

one obtained by the process of averaging. How do these three lines

compare?

.3. Draw the lst-quadrant using a scale of 1 second for each horizontal

division and 1 millimeter for each vertical division. Draw a line

which passes through the origin and has a slope of 1 mm/sec; 2 mm/sec;
.;

and 3 mm/sec. Label these lines e -de
2
and I,

Plot the lines in the preceding problem, using a horizontal scale of

1 second per division, and a vertical scalp of 0.5 millimeter per divi-

sion. Compare these three lines with the lines in Problem 3.

5. Draw a 4th quadrant on a sheet of coordinate paper.

zontal scale (in Seconds) that you used to represent

Falling Sphere Experiment. Make a negative distance

Use the same he i-

the data from the

scale (in

meters) along the vertical axis. Note that this was the orientation

of your sca

ro

when you performed the experiment. Plot the time-distance

idata from y .experiment on this sheet and draw the "best" line. Calcu- .

late the'slope. What is the significance, if any, of a negative velocity?

3.6 The Point-Slope Form

When we Plot data obtained from different experiments involving linear

relations, we always obtain a "best" straight line. The orientation of .this

line on thTcoordinate plane will vary from experiment to experiment. We can,

however, discuss three general typep. In Chapter 2 we found that a line which-

intersects' the vertical axis at a point other than the origin would have an

equation of the form y = mx + b, as illustrated in 9(a): ln the Number

Generator aperiment and the Falling Sphere Experiment, the graphical repre-

sentation of the data passed through the origin, Figure 9(b). We found that

all graphs of-this type could be represented by an equation of the form y = mx.

68
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(b

(c)

0,0)

Suppose, however, we are to ar-

rive'at a graph which looks like that

in Figure 9(c). In ;this case, if our

domain is limited to,valuesgreater

than'a'we will-not,have aity-intercept,

at all ". The slope, however, can

still be calculated in the usual way

by selecting any two points on the

. graph and finding the ratio of the

vertical distance'between these points

to the horizontal distance between

then. ,The'slope is'the same for 2ra

two points on a straight line. To
X

.obtain the equation of this line; the

point at which the line intersects

the horizontal axis is taken as our

first point, and this point has the

coordinates (a,0). Then for any arb-

itrary point with coordinates (X,Y)

we can find the slope at this point.

,o)
ia Y 2 0

-
X - a

m .

Figure 9 Using thid value of the slope, the

o dquation rela ing x and y can be written
gf

Y = 114 -
r

This is the third of three "special" forms of the equation of a straight

.line., It is nottecessary to remember all three forms. Instead; we can find -

a general representation for every straight line by using the 'slope of that

line and .any point on the line. In Figure 10 we have a point whose coordinates
.

(c,d) are known. If we have previbusly calculated the slope (m) of this line,

then, for.anylrbitiary point (x,y) we have

. a)

x - c

from the definition of slope and thus

y- d m(x - c).

'



This more general form of a linear

equatin is'called the "Point-.

slope" form. This forth of'the'

equation of a straight line will

yield each of the three special

forms Simply by selecting.thS ap-
-

propriatIspecial point in each""

instance. This is done below. .

Figure 10

If the graph intersects the y-azis, the coordinates of the point of
,

intersection are (0,b). Theie values inserted in the point-slope equation

gives

y - b = m(x - 0) ,

and then

y = mx + b (the "slope-intercept" form).

If the graph happens to pass through the origin, we can make use of the

coordinatesOf this point, (0,0), and obtain '

y 0 = m(x -.0)

y = mx .

'In a similar manner, if the line intersects the x-axis, the point of

intersection hai.coordinates (a,0) and 117-e-\Obtain

y - 0 = m(x - a)

or

-10,440,%

y = m(x - a).
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Exercise 2'

1. Wilte the equations of the lines

points indicated in each case.

Y

12

8

6

4

11' I2 and , using the two

5

,

L4,,-1

1

. . M
1111/111

-.MAI RI
,

_....g1

Wig . , _

II1

$ -1

7
I

. 1 i

r-r-

Y 1 I

.

--T-
4-- --1-if.

0 2 4 6- 8 10: 12 14 16 18 20

2. Write the equations of the lines /5,.andf '6 .

26

24

22

20

18

x

.
aw

W

ti
1

25
.

, .

. V:

2
6

.
.

.

.
.

1

V
-,.-

A .

4

M
,

8 in 12 14 16 18 20 22 24

3. Find the x and y.intercepts for lineve5

Do not extend the lines.toobtain a graphical solution. Remember that

the y-intercept is the point for which x ='0, and the x-intercept is

the point where y = 0 .
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Refer to your time-distance graph obtained in the Falling Sphere Experi-:

went. Using a point not on the vertical S together with the slope,

find the equatiOp to represent t raight line. Show that tibia

is equivalent to the equation obtained using the slope-intercept form.

5. The following equations are expressed in point-slope form:

0 y - 6 = 3(x + 4)

y + 2 = -2(x - 3)

y + 7 = 3(x.- 2)

- 0.5 = -4(x + 3.5)

Save each of these for y. State the slope of the line and the y-

, intercept"in each case.

6. Take your graph of the data obtained in the Loaded Beam Experimet,_ fit

a "best" line and obtain an equation of this line, using, the slope-
.

intercept form and the point-slope form.

3.7 Relations and Converses

A graphical.representation is perhaps the most illuminating way to pre-

sent a relation. It conveys at a glance much important information. For

example, in Figure 11(a) a graph of a semi - circle of radius fi,ve is shown.

The graph intersects the horizontal axis at two points, (-5,0) and (5,0) and

the vertical axis at th,e point'(0,5). Figurrl(b) is labeled to indicate the

domain and the range. The doiairi is the-set of numbers (d) stic.: that

-5 < d < 5. The range is the set of numbers (r) such that 0 r < 5 .

Figure 11(c) shows a line segment in the first quadrant. What are the domain

and range of this relation?

Figure 11
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In the Falling Sphere Experiment we have a relation tetween tite dered

,pairs which is of the form-(time value, distance value). 'If we tai this set 4

of ordered pairs and interchange, the first and second eledents:*in each air,

we will obtain the converse of the relation. This mean's that we willIave or;.
'A.

dered pairs of the form (distance value, time value). The set ofddistance

values will now form the domain and Will be plotted along'the horizontal,axis,

'land the set'of time values will becamelphe range and be plotted along the-

vertical axis.

/.-IThe 'example below gives a set of ordered pairs A and information about

the relation and its converse.

Example:

o

A = ((0,0),

(4 ,

(converse) = ((0,0),

(1,2),

(2,1),

(2,4),

(4;2),

(3,6))

(6,3))

Grap
of
A

Graph-

of
' Converse

0 2 4 6 Exercise

domain (0, 1,,2, 3)

range (0, 2, 4, 6)'

relation_is a function

domain CO, 2,-14:, 6)

range (0, 1, 2, 3)

converse is a function

-(a) Graph theordered parrs given below, state the domain and range and tell

if the relation is a functiqn.%

(b) In each case form the converse relation by interchanging the first and

second elements of the ordered pairs. Graph the converse, state the

new .omain and range'and up if the converse is alfunctiont '

1..

2.

Q = ((2,3),

M = ((5,3),

(2t4),

(6,3)',
"

(2,5)),

(7,3)1
),

3.

4.

N = ((3,6),

P = (-3,-7))

O
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3.8 Inverse Functioa

In'Problem 4 above you should have reported that both the relation and

its converse met the definition of a function,- When this situation'ogcursc,

-we say that the'relation and, its converse, are inverse functions. Meth this-

definition we see that every relation will have a converse but not every

function haspn inverse. From this point on, when we refer to an inverse

we mean that the relation in question is a function and that its,convel'se

is also a function.

We can use the iraph of a relation to tell if the relation is a emotion,'

as described in'Chapter 2. The graph canals be used to tell us f ther,,
A ,

.4function has an inverse, or, in other words, to tell us ifthe converse of,,.

any relaftion'is afnnetion.
I'

'Recall from Chapter 2gthat if no line parallel to the vertical axis

meets the graph of a relation in more than one point, then the relation is

a function. It is not necessary to,drsy the converse relation to decide if

the funttion has an inverse. If no line parallel to the horizontal axis meets

the graph of relation tIan one point, then the converse of the rela-

tion'is a funCtion. By a combination of these two graphical tests we can

decide if a function has an inverse. (See Figure 12.) ,

(a)

(c)

(b)

1 relation is'NOT a func.
converse is NOT a func.

trelation is a func.

converse is.NOT a
function

relation is
fun on

1

converse is a.
function_

convergei is afunction

relation is a function
I

Figure 12
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, Just as ,relations which meet certain qualifications are.puio in :a special

°

fnnctions, functions-which have an inverge are given a special
,

name. They are called one-to-one functions. Every element in the domain

yieldibne element in the range and everg element, in the rangeowill yield
-
,oneflement in-the domain.

Exercise 4

le Refer to Exercise 2 in Chapter 2. For each of the graphs, check to see

. if the converse of the relation shown is*a function. Are any of these

relations one-to-one functions?

2. In the Falling Sphere Experiment, the data in the table forms a relation.

(0' Whet are the domain and range of this relation?

(b)' Is this relation a function?

3. ,Does the "best straight line" describe a function?

4. Are.the_domafn and' range of the "best straight line" relation the same

ag the domain and range of the "data relation"? Explain.

Are the domain-and.range of the equation the same as the domain add

range of.the greph of the best straight line?

6. In the Falling Sphere EXperiment we'obtained the equati9n mt. Obtain

the converse relation by algebraic means. (Hint: solve-the equation

for t in terms of a.) How might we have conducted th experiment to

giVe the-converee relatiFon directly?

7. *Do the original Falling Sphere relation and its converse fonn,one-to-
,

cileofunctions?

3.9 Graphical Translation of Coordinate Axes

. A line drawn on coordinate_papem always representg some sort of Linear

function. In Section,3.6 we learned that we can write the equation of aline
i

if-we know its slope and the coo inates of one point on the line% In general,
,,,

if tr lineslope of the is m the coordinateS of one point on the line are

' ,(c, ), the equation of the line s

m(x - c) .

This giceralfors of a linear equation is called the "point- slope" fora. The

4 constants c, d and m in this equation determine the location and orientation

75
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'of the line on the coordinate'plane.

jor many4Urposeeit is very useful to think of all lines that cao'be

drawn as different positions of a single_line. It is only the mathedatical

'description of the line that differs. pne'Point of view would be to think

of thelineas having moved from one position to another With respect to the
44

coordinate,axes. It is also possible to think of the Coordinate axes as

having shifted with respect to the line. This lattiiia'apProath is the ones °

discuss in this section.
4

Aft excellent way to visualize .thistrahlation is to have the coordinate

axes drawn on a transparent sheet which can then be moved about over the

figure. An
28- X 11-inch sheet of frosted acetate provides a good surface

.upon which a set of movable
*
coordinate axes may be dralni. In making the over-

lay, the frosted side of the acetate should be up. Pencil lines can easily be

drawn and erased on this surface. The "moving" axes must have the same scale

as those on the coordiUate axes which are to be translated.

Wh'ennithe -plastic sheet is placed upon a regular,sheet of graph paper,,

the graph beneath is easily visible. In this way the graph can 'be readily

related. to the 'than-coordinate-axes carried by the overlying plastic sheet.

The new axes may 'be placed in any_psitiOn you wish. The sheet.of frosted

acetate, a piece of graph paper, and the combination of the t04 shown' in
. .

o

IFigure13(a), (b).and (c): ,

Acetate sheet with axes'.
(a)
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1111111SIMEN g51'
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111111111Effimarmari:

. -

Coordinate paper and gra01.

(b)
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rvoY,
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Graph

.1 .

ewed

r

in relation to,dew

(0"
Figure. 13
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Figure 13(c) shows the coordinate axes X and Y

respecto the origin of the graph beneath, Tile use

X and Y on the overlay will help us to remember that

axes that 1;e translated. 0

displaced upward with

of the capital, letters

these represent the
, 4

, It must be realized that '1f we are to allow any kind of motion of the

coordinite axes X and Y, this motion'might be rather complicated. We can
c

simplify. matters, however; by recognizing that any complex motion may be

1(b °ken into two partg. One of these Parts .is simple straight line motion,

'called a translation, and the econd is ptation. Any motion of the coordin-

ate axes is given by a combin tion of these two types. Only straight line

motion of the axes will be coisidered here. There is one other important

point to be made. Any motio of translation can be consideredas made up. of

-two translations, one in tha
1

horizontal direction and one in the vertical

direction.

Suppose we start withFthe X and Y axes on the piastic overlay coincident

with the x and y axes, on the sheet underneath. When these axes are trans-
!

I.

lated, the entire ploipitic heet moves horizontally and vertically and is not

rotated. The X axis must lways remain parallel to the origiaal x axis and:

the Y,axis must always remailvparallel to tide original y Wcis.
.. .,

Figure 14(d) shOws the graph of a 'linear function and Figure 14(b) sug-

gess one of the many ways in which tft000rdinate axes may be shifted: The

I. axes have been moved upward untilth-enewprigin is at the original y-intercept'
. .

Using this new posi on of the axes, theiration otthe line would now be of

the form Y - mX, wh re before it was of the form y - d = m(x'- c).

OZY
Jo

I.

I

4

(a)

' ()

.Figure 14
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Notice that the slope of a line never changes as the axes are trans-

lated. This is an exti-emeV n.important feature Of a linear translation. When

. the axes are rotated, this tatement is no longer valid.

Example: .

Suppose, as is Figure 15, we have a liP'e which passes through the

origin. The slope of this line ,_,and the equation of the line is

y x

r

454,

Figure 15
.

... :- .

Let us now translate the.coordinate axes two units to-the left and four units '7-

downward. This new situatioais shown in Figure 16. 'The shifted axes are ,.

labeled, as before, X and Y, and the original axes are shown as dotted lines.

Y y

a

x

Figure 16
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You should now verify that the slope of the.line is still
3

. The

coordinates of the old origin are now (2,4), and'the equation of the line

ienow Y - 4 = (i)(x - 2) . This new equation is deriv d from the point-

Slope form.-

Exercise 2

With reference to a set of coordinate axes, select the point (2,3) and 41

through this point draw the line whose slOpe is
1

. What is the

equation of thiwiline? Use your plastic overlay to obtain the nilk .

equa on of this line when the origip is shifted:

(a to the left 3 units;

(b') to the right 3 units;
All

(c) 4 units upwards;

(d) 4 units downwards;

(e) to the left 3 units and up 4 units;

(f) to the left 3 units and down 4 units.

2. With reference to a set of coordinate axes, draw the line Which passes

through the points (1,7) and (7,5). What is the equation of this line?

Use your plastic 'variety to obtain the-new equation of this line when .

the origin is shifted:

C (a) 46 the x- intercept;

(b) to the y-intercept;

(c) to the point (4,6)- .

3.10 Algebraic Translation of Coordinate sltps

'IL
a a

4 The mathematical description of a graph may be'obtaf.ned easily by using

the graphical procedure described in the preceding sectionPyIt is also de-

sirable to be able to describe a graph after t eiaxes have been translated

' withou t1re orting to the an lysi of the grap Aself.
-#:

1

.,
#

-FIrs we will show' th t th, cola-slope representation of a line can b4

considered as one in -which the'coordinate axes have already teen translated in

both horizontal and vertical directions.

Suppose we have aline which passes through the origi (Figure 17).

Th equation of this line is T mx .
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y

c .

= MX

x

Figure 17 I .

Lit us now translate the coordinate axes "c" units to the left and "d" units

'downward. The shifted axes are labeled, as before, X and Y (Figure 18).

.
After the translations, -he old origin no longer has the coordidated (0,0).

4

Let a horizontal translation tc:wthe left be considered negative and a vertical
0 . , 1.

!

translation downwarI+also be nigative.;,In this case, the horizontal transla-

tion is (-0' and the verticartranslation (-d) (Figure 19). The position
. . .

of the new origin is c:units to the.left of the old origin-. Therefore, the

.new horizontal coordinate of the old origin is .c. ;Similarly, the new vertical

coordinate is d. .A
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N. . .
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- 0
Figure 19 ;

Since the point (c,d), the coordinates of the'old origin, is a particular

point on the line, we Can now describe the line inthe'familiSr point-slope

K *

Y - d = m(X - c) .

If we now write this same expression, in slightly different form

Y + (-d) = m + (-c)].

4

we may draw an interesting conclusion. Since the quantities in parentheses

are the horizontal and'Vertical translation distances, this last equatibna tells,

us that thejett-slope representation of a line is given by setting the

Y-coordinate ip2e the vertical translation equal to the slope of the line times

the quantity, X-coordinate plus the horizontal translation.

Y + (vertical translations m X +((horizontal translation)]

The procedure described above is a general one, even though it was de-

rived for the particular case,of a line passing through the origin. 4uppose,

for example, we have the line phown inragure 20. The equation of the line

is

y - 4 = (x - 4) .

IIVIIIMI111111111/135/
11111111111111111.11EM
1111MIIIEZIONNE1111
111111111111ENIIIIIIII

2111111111111M111111111
1111111111111111111111Hill
11111111110111111111=11
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Let us translate the axes, this time with a-horizontal translation of two units

to the right and a vertical translation of one unit up. This translation is

shown in Figure 21. The original axes are shown Ifith dotted lines. In rela-

tion to our new axes, every pOiht on the line has a new pair of coordinates

(x-2,y-2). The slope of the line has,of course, not changei.f.

x X

0-2, 4-1)

A

+4

1 2

Figure 21

Let us now use the point-slope mer to find the equation of this line.

The point we used originally had coordinates (4,4); with respect to the new

as itd'coordinate are now (4-2,4-1). Thus, the equation of the line is

now

2 Y - (4-1) = -24"- CK - (412)1

and again,rewriting,in a slightly different form,

Q Y - 4 +.(2) = (.Ka 4 + (2)).
4

Simplified, the new equatiOn of the line becomes Y - 3 t=L

= tX + 2 with respect to the new origin.

We normally designate a ho'rizontal translation by the symbol h and the

7- Vertical translation by the symbol k. As previously, stated; is horiiontal.-

translation to the right is positive (left'is,negative) and a vertical trans-

lationlation upward is positive (downward is negative). We cantnowsmake a general/

equation to represent the mathematical description of a line which results
,/""

a translation of axes from any pi-evious poixit. If the original descriptiOn o
- ,

the line was '
1

y. d =-m(x - c) ,

I 82
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a horizontal translation of h units and a vertical translation of k gives a

'new expression

Y k = m (X - c + k).

Exercise 6

1. With reference to a set of coordinate axes, draw the line which passes

through the.points,(4,8) and (0,0). What is the equation of this line?

Obtain the equation of this line algebraically when the origin has been

' translated: -

(a) to the left 3 units;

(b) to the right 4 Units;

(c) to the left 3 units and down 4 units.

2. With reference to a set of coordinate axes, draw the line which passes

through the point (1,7) apd (7,5): Write the equation of this line in

pointy -slope form. Obtain the equation of this line algebraically when

the origin has been translated:

(a) to the x-intercept;

(b) to the y-intercept; t-

(c) to the 01* (4,6).

Compare-.your'results to those obtained graphically in Problem 2_in

Exercise 5.

3.11 'Summary

_Using the Falling Sphere Experiment to provide, the data, we investigated
-. ,

the phenanenon,of terminal velocity. From this data it was also,found that a

,"best straight line could be dreWn which is an idealized tepresentation of the

data. This idealized line is a physical model of the relation;. It then fol.:
? , ,

, . I

1617 that fromwthe physical model it was ossZole to evelop a athema cal
.

Model of the,data. . .,, .

,

1

The slope-intercept form of the liner equatifn was detived to a sist us
P

VI, with linear tions. Pt also followed that.relatiOns, their con -

,,verses, and inverse fu tions could be readily developed. The, one-tp- ne

functions, were then introduced.
.

' f:4
t"-

1

. - .40"-

Finally, the translation of axes,was investigated: Two separate 'pro- ,

.

cedures were used.. Firt) the translation was performed,as a physical process

,J 83
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using a piece o£ frosted acetate"cetate to clarify the meaning of the translation.

Next, the mathematical model which describes this translation was evolved. ,

In general, this chapter presented an opportunity for an analysis of

some aspect of experimental functions.
4

0

44.
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I
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v
Chapter 4' ,

I

AN EXPERIMENTAL APPROACH TO NONLINEAR FUNCTIONS

4:1 'Introduction

N

Not ,all physical situations danbe.described by a simple straight

In certain cases the graph of one variable plotted against another will be

some soxt of curve. Usually these cases can be approached in a fashion slm-

ilar to that used with linear functions, but new mathematical models must

be found.
4

In this chapter you wil' learn that nonlinear models are needed to rep-

.resent certainlphydicalsituweions. The nonlinear relations that we will en-

counter lave represent a more complicated kind of function than the linear
.-

function. 1 0

These functions will dive you a deeper insight into concepts which have

already.been introduced.

r

4.2 The Wick: A Classroom Ekperim nt

e,
You have seen and used many examples oematerials which absorb water,

milk or other liquids. - Whenyourlit e brother spills his milk someone is

apt too use a napkin, paper towel or dish cloth to absorb the milk.

4

4.

' :Years ago your grandparents probably used kerosene lamps fdr lighting in

their home. Your parents may have a kerosene lamp or lantern for Ce in camp.

ing or at home if the electrical power is cut off. The strip of material which

hangs down into the kerosene and extends up to the burner is called a wick.

This ick absorbs the kerosene na conducts it to the burner.

o doubt you have observed this Thenomenan in a number of situations
I

where a liqUid'travels along a trip of material.

[

At what rate does this ab orbing take place? It the rate of travel con.

stant, increasing, or decreasing? Can we build a physical model of this

process?. How about a iathematical model? An iAteresting experiment can help

'you to answer some of these questions.
- in.

, -, ,
, For7this experiment you 111 peed a strip of filter papei or chroma0-

c
draphy.paper, a container for water, and a Itch or clock with a sweep second

,
I

>,...
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hand. The purpose of the experiment is to gather data regarding the rat; of
, .

ascent of water up the paper wick. From this ,data we will attempt to deter-

mine if tA. movement, obeys some physical law. To achieve this we must some-

how make so progresE; readings as the procesi ig goi) on. Let us take a

.strip of the hromtography paper 15 cm long and Mirk'lt with dots at.olle

centimeter in eryita along its length as shown in Figure 1.

g

This strip will b yOur wick. Now slip a regular paper clip on oneend anpS

three-inct'piece f transparent tape on the other and as an extension for

hanging the strip from a support. Start with the second mark from the .paper

,clip'end and number each dot from 0 to 7 lhcluaive. )Vow your strip should

look like Figure 2.

, ,

)
Figure 1 1.

FigUre 2
.0:.,,: -

.

A glat;s or pyrex 500 cc beaker is ideal for your water container but you

to could use a regular drinking glass. If it is breezy in your classrooi a taller
./ ..

beaker or a quart jar might mike yotir work easier. *1)12,needito rig ome manner

of hanger for the wick. If you use a low containe lea- thewater a 5 ckoiR
books with the top book protruding out about two i Ches'bAler, e ends of the :._.

1r

other bOoks will work fine as a place to suspend the4icX. st lever the
. .

wick into the water and stick the tape to. f .the edge of theZp5 ding book;
\- .

If you use a tall jar simply lay a pencil or ruler across '.b.:! p' of the Oar ,'

.t, i

.'llnd hang the wick from here so that it reaches into the water4c:to the zero
...,

point .\ Figure 3 shows now these two alternate set -ups, might ldpk.. Either.

ma prove more satisfactory foi you.



Herne are some belpfu hints for performing your experiment.

tl
§

Figure 3

N)

(1) ght across the water surface and hold the wick on the outside at

R per level so that the zero point of the wick is even with tbe surface

of the water. Do this to determj.ne ahead of time about what level to stick

the tape to your hanger.

%it

'011kk

(2) Work with a partner so that. when you dip the wick into the water to

the zero point ,your partner can be ready to watch the water move up the wick

and record the seconds,"kseed as the water reaches each successive numbered

Point. to ready! It 1011 move fast at the beginning.

, (3) Record your data in a table listing the numbers 0 through 7 in one

column and the time which corresponds with each point in the other column.

YoUr'table might look like the one shown in Figure 4.

:. Centimeters

park -'

Time

min - sec .

1Gtal deconds,

expired ..,

0 8 . 00- 0

1 -Q. 08 . 8

.. 2 8' 145 45

'3 9 14 74

k
.

4

6 to .

7 .

p

=2
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From your table of recorded data you can fOrM a set, of ordered pairs.

Each ordered pair should be of the on (centimeter mark, total seconds You

may need:to repeat the exiAiment several times to improve your technique.
.

When you feel you have gained g useable set of data, you are ready to construct

a physical model of your data in the form of a graph. Let your origin be at

he lower left hand corner of a full,sheet of graph paper. Determine your

horisontal,and vertical- scales based on your data so that you will use.the.

`Whole sheet of, paper for your graph. Plot your set of ordered pairs on the

graph paper. Yoare now ready to investigate the mathematics of the Wick.

4.3 The Physical Model

The Wick Experiment has given us a set of ordered pairs of the form

(distance, time)., The graph should look similar to the graph in Figure 5.

0

a)

E-1

16.

p

DiStance

fa

Figure 5

i.)

Alt ough these data points are, in themselves, a relation they are not partic-
1

ul -ly useful in bescri1ping,the behavior of the Wick-. We would like to con-
'

structa physical model which woidd allow usr predict ordered pairs between

the points. Foray inteMediate length in, e domain we would like to be-able

to termine the corresponding time interval. QUite ,naturally we are inAinedoAL
t connect the various data points. Our first tendenty, Might be to connect

the points by a.best straight line. However, it becomes immediately obvious

that no straight line can fit the data. In fact, the array of points,pn the

graph carries a strong tendency toward a continually increasing slope. If

0, 1



We connect successive points with straight line 'Segments, went a model which

shows this tendency even better. This model seems to say that the absorption

prvoressea regularly for a short time; then there is a sharp jump, after which

it again progresses regularly. In the experiment, we did 'not observe any jumps

in absorptlon, whith would account for kinks in the graph. We realize that

.\ there should be no particular reason'for .he kinks to appear, at the points

which were graphed. If this were the case and we had taken data at hal?-centi-.
meter i ervalsthere would be an extra set of kinks between the present set

of data points. Connecting the data points by segm&n!s is possible, but, as

we , not very realistic.' A more reQ.istic phySicel model would 'be a smooth

curve through or near the Mints. A smooth,curve representing the data is
, .

shown in Figure 6. Drawing the "best" curve means the Smooth curve whic1 you

feel fits the data. Even though everyone in the group uses the same data'this

does not mean everyone will drat the same curve to construct this physical
4k. .

model.

. .

/ . .

Flare 6
s

Tile next steer' is to see if our physicalmodel leads to a simpl theamAcal

representation. This model should represent the physical sit on.both accur-

ately and\concisely. In addition, we may be.abletd use the lodge gained

from the mathematical model'to belp us understand ibe physical orld. The 41

question ilov.iS,how to proceed. Sine.we already know something aboutlinear

functions, it may be wise to attempt to ;use thp knowledge in the-pTesentscese:

89
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4.4 Mathematical Model
,o

We have generalized the experimental results and,through physical reason-.

fhg created a physical model:

Since the graph is not a straight line it is immediately evident that it

. is not linearly related to. d. Howeyer it may be possible to form ordered,

pairs by performing some opergtion on d or t which will result in a linear

relation'. For example, perhaps one of the following type'S of orderdd hairs

1
give a linear relation: 4,t), (d ,t), or (41,0. When a mathe-

matician or scientist has studied many relations and their graphs he is usu-

ally able to determine feom the shape and location of a graph an approach to

the related matheMatical model. Remember your work in Chapter 2 and,3.: When

the data graphed produced a straight line you came to know that an equation

of the form y = mx ; b could .be ised to describe the 'graph.

Exercise 1 ,

Each of the following problems consists`-of a set of ordered pairs of the form
A

(xpY)
,,'

(a) Graph each set of ordered pairs. (Check the domain and range before--;

setting scales on the x and y axes.),

(b) Draw a smooth curve through the points.

(c) Form a new set of ordered pairs following the instructions given

With each problem. (Problem 1 is partially completed as an example.)

(d) Graph this new set of ordered pairs on a new het of graph paper. ,

(e) In each case part (d) should yield a straight line ;find the equation

of this line using the methods of ChapteT 3.

1
((0,0), ,(1,1),.(2,4), '6,9); (4,16), 45,25))

Form ordered pairs of the fqrm (x2 ,y).

((0,0), 01,4, ...,(25,25))

,2 ((1,0), (2,6), (3,16), (4,30), (5,48), (6,76)i

Form ordered pairs of the form (x2,y).

3 N(0,1): (1,112); (2,5), (3,14-2), (4,33))
1

Form ordered pairs of the forth ,(x3,y):

((0,3), (1,4), (4',5), (9,6), (16,7), (25,8))

Form order.O.pairs of the form (V,y).



5. ((39,1), (15,2), (10,3), (6,), (3,10), (2,15), (1,30))

Form. ordered Pairs of the form (t,Y)._

6. Using the set of ordered pairs (13/,t) you'obtained from the Wick Experi-

ment, form and graph'the ordered pairs:

(a) (d2,t);

(b) (d,t2);

(c) (d3,t).

Which of these giCs data which is closest to a straight line?

4.5 The HoriZontal Metronome

Oscillating systemA provide a convenient and'easily tonstructed means for

generating nonlinear functions. Such functions also occur-gery often in our

everyday life. A point on any rotating wheel exhibits an oscillating behavior.

Since an oscillating system repeats itself in tie and space, measurements can

be started and stopped dt convenient times and'ilaces. For example, a pendulum

canLbe started and allowed to awing until any irregularities have disappeared.

After these irregularities have disappeared the timing can be started and the

time for one swing measured. We do not have to initiate. the motion and-start

the timing at the same time. On the other hand for a ball rolling down an

inclined plane the timing must be started at the same time the ball is released.

I his experiment we will examine an oscillating system comprisA0-014

hack saw blade clamped in a vise at one end and loaded at the other with a

Piece of lead. Ae equipment illustrated in Figure 7. Clamp the blade so

teat the motion is in a horizontal.plane. When any stiff rod clamped at one

end is pulled aside, a force it felt which tends to restore it to its original

position.' When released the rod will pass through the equilibrium position

and the direction of the restoring force will be reversed; Therefore, the. rod

. will exhibit to. and fro motion, and we'say,it is oscillating.

Ls
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Figure 7

a 4* 40

For any type pf motion which repeats itself in equal intervals of fira4,

the time interval between any event and the moment the same event, occurs again

is called the periopi. The period is usually measures from a point of maximum

'deflection. For example, the period of the hack saw tlade will be the time

interval for the lead weigtk to move from one extreme position until it returns

to thpt same position. d,

The hack saw blade"witnout the attached mass will vibrate very) rapidly.
, .

The corresponding period is'small. Placing a mass on the free end of the blade

wills$ ow the vibmAting,motion of the blade and thus increase the petiod.
_

A little experimentation will also show that the period of vibration'

depends upon tae length of the rod. This length is measured From the edge

of the.jaws of the vise to the center of the lead mass. Ifwe allow a short

length of the rod to vibrate, the, petiod will be small. However the longer

the length (d) the longer the period (t). Therefore, tiv period of vibration

depends on tte length'of the rod. Other physical characteristics can influUnt-e
.

11

the period -of the ro.d.Oheof these is the size and shape of the rod and an-

other isthe maximum displacement of the swing from the rest position (amplitude):

In thisrexperiment we are going to investl.gate how.the length of the rod

infldences the peri8d. Once this has been decided we must fix all of the other

possible variables. Hence, if we take a particular hack saw blade, a fixed
a

.
mass for the load,. and keep the.amplitude fair2.y constant, there.should_beno

infldences on the period .other than the,liriff.'
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.1
These conditions and the equipment form a basis for the experiment. For

each selected length of the blade (d) we will measure 'the period (t). each

length there corresponds only one pqriod. Thus the two measurements forth an

ordered pair
I

(d
'
t). That is, a length-time relationship: For relations which

may be nonlinear, it is advisable to have the domain cover as large an inter-
.

val as possible. If the blade measures 30 cm, clamp it in the vise to give a

starting length.of 20 cm. Make a period measurement at this setting. Shorten

the blade length by 1 cm and take a new period measurement. Repeat this process

of adjusting the blade length and measuring the period until you get a blade

length of 10 cm. Below this 10-cm length,the period will probably be so short

that' time measurements by visual methods are imQRssible. A convenient and

more accurate method for determining the period is to take the time for 50

oscillations with a stop watch and the divide this time by O. This method

of measuring period gives k
/
more accurate result than trying to measure the

period for a single oscillatiOh. Starting 'faith the longest length and working

toward s o r lengths has a definite advantage. Long lengths correspond to '

long p ds and are easy to measure. The techniques developed to measure

longer periods will prepare you to Measure the smaller periods. You will

probably find that periods shorter than,0.5 sec are quite.diffitult to meas-

ure accurately.

, The length in centimeters of the blade (a) ip measured from he vise Saws

to the center of tne lead-Weight. The distance should be measured to the near-
. ,.

est millimeter. Record d in the first column of your data sheet. Use the

next 'two columns to record the numer.of oscillations and the total.time in.
'Y

seconds. From this data calculate the period (t), -and record in column,four.

Your table might look like the one in Figure 8.

Lengt'g

d (mm)

Nuffiber of

Oscillations

Total

Time

Period

t (sec) ,

.

.

. *

.

.

.

1

.

,
.

,

.

.

.

.

.

.

Figure 8
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o

a intercept the d-axis to the right of the origin. This would suggest the exist-
°, 0 ;,-

---ence of an arm of some length that could not vibrate.
. .

,
Actually, we can see from the exper/ment that as the length of the metro-,.,--,

. .

. .
al .

,

-.7
home arm is shortened,, the time of the .perSod also gels shorter. This indi-

. 1

Cates that the gkaph should approach the origin instead of intersecting the

d-axis at some other point, /

0
In Figure 9b we have drawq,a segment of a curveithrough the plotted points.

1

-
We do nots'have enough information to extend this curve closer to the origin at

%
the present time. . ,o

. . .*
.'

re again, as in the Wick Experiment, it is evident that we do not ha1.4

a21-141 ar relation. The graph of our data is not a straight line. ,iou.saw in

.Now form the ordered pairs (d,t) and plot them on a coordinate plane. If

you like, you can record these ordered pairs in another column of your table.

Label the horizontal-axis d, and the vertical -axis t. Select%the .scales for

both distance and timso that the graph will come as close as posgible to

filling the paper. The graph of the distance-period relation will look simi-

lar to Figure 9a.

0

P4

o

0 0 length (d) length (d)

(a) (b)

Figure 9 /1

.s.

Caution! At first glance this. set of pOints might appear to suggest a

linear relation. But a straight line through these paints, if extended, would

Exercise 1 how it was possible to form a new set of grdered pairs from,(,IEV°

data. The graph,Of the new set of ordered pairs will,have a- different shape
,

than(the graph of the original.set:

Consider7the possibility that.a linear relation may exist betWeen d
2

and

,.). t.,Returrito your data page; label a new column d?, and compute the value of

,4 4

;WO
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d
2

for,each measured d. On a fresh sheet of graph paper construct a new set of
.,x .

,,axls with the scales suitable for the distance squared -(d2) and the perio (t).

VNow
2 .

, plot the new (d ,t) ordered pails. A graph similar to the one you wi 1
0.

probably get is shown In Figure 10.

O

H
0
$:14

length squared (d2)

Figure 10

If onr-gu = has been correct these points will, fall on a straight line, and

we can say that 4t is related to d2. Calculabe the slope of this line

a44 use the point-slope form to
2 2
de 6 e the equation of the line. This qua-

4

tion will be of :the'form t = and + b. If theld- plot had not been a straight

line, our next step wokIld be.to compute d
3 and make a graph using (d 3 ,t) pairs./

We Would examine this graph to see if it gave a linear relationveh-then prod

Ceed to. find the linear equation.

'We would now like'to see if this equation can be used as a mathematical
t.

model for-the curve in the -first graph. as drawn in Figure 9b. To ch4ck this,

select several values from the domain d. Use the equation t= md24 b with

your Values of m and b to calculate the period pipdicted by the equation.

Fo4m ktiew set of "theoretical!" 'ordered pairs (d,t) and plot these (d,t) points

on the same sheet of . coordinate paper used for your experimental points! Com-

mon practice is to use solid circles to indicate the "theoretical" paints and

open circles for I'data",points. Use a dashed line to draw a smooth Curve

thrOugh the sol,idcirclei3-.so you do,not confuse this new curve &with the orig- .

anal curve through the open circles. If this curve compares favorably tothe...;*

experimental curve then ye can use the equation as.our mathematical model of

.the metronome. r ` N

is , The ipatain, as defined bythe.eltpertment,,dienot,encompass all points of

physical, interest. Since we could hdt meaaure short perioda,.it would be

e
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value-to try to predict theM. Great Care must be exercised in doing this. It
.

iobvioue from the physical construction that before zero length is reached

the.weights will prevent further shortening of the blade. In the other direc-

tion it is obvious that continued extension of the blade is impo%sible, 'With

these limitations in mind the extensionean be carried out,' in the following

way. The mathemacal model of tr;e relation belwPPn d and t predictsa period -

for each;blade length including zero. , Wilues-ofd within the extended domain

are selected and the corresponding periods (t) calculated. These new values
r""

of d d t are now plotted bn the original graph and the curve extended. 0-

.course tcan also be read directly off the straight line graph of (d
2
4);

4

Exercise 2\

].
vale following equations describe various curves.

(a) Whpt_torm_if ordered pairs would you predict in each case,to show 'a

. straight line'graph?

t

(b) Use the following numbers (-2,-1,1,2) from the domain of the given

relation tdZformethe predicted ordered pairs.

(c) plot. these points and checlvto(see if they fall in a straight line. _

(d) Write the linear equation for eacli graph.

4
/1\

Example: y = 3 k-) + 2

PrediA ordered pairs of the form (1,y).
.

7 = 3 t
+2

3
4°°"- 2 ,

In a "similar way thefollowing 'crrdered pairs,are calculated:

(-1,-1)

(1,5)

("'y 7)
./

Nate: 0 cannot be used to -form an ordered pair.fOr this relation
y

(a) y x3 +7

,

1
since --) is undefined.

Thispoint is missing from the graph

since the ordered pair (0,2) is not
. .

in the relation. .

ti
The equation of,the line is

y =3u + 2. The domain of u is all .

real numbers except .0 and t'ange of4y

is al" real nUmbers.except 2.

V-
0) = x2 +

1
(c) y = - 4

xc
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\
i

.4.9is .th6 second element

is 7 which is the VW

(7,49).

1

e first element of this ordered pair
i

.
.

For example, to find VW, consider he ordered pair of the graph for which

r

t

,..,

From the graph obtain the following values.

"

(a) 25

(b) A-27

(i) (4.6)2

(c) VE (k) (10.8)2

(d) 46 (1) (3.2)2

(e) (m) (5.5)-2

(f) (n) (6.8)2

(g) 417 (0) (76)2

(h) fig (Hint: (76)2 = (7.6 X 10)2

= (7.6)2 x 100]

3. From7your original graph of tii,t) pairs find the value of t corresponding

to d = 8.5 cm. Using the equation you obtained to describe the distance-

period"relation, calculate the period corresponding to a distance of 8.5 cmi.
s.

COmpare-thp'two results.

4. Each of the following sets of ordered pairs (d,r) describe'Narious curves.

(a) ,.Plot the points.

(b) Draw the curve.

(c) Form new ordered pairs of the form te,r) and piat,these points.

(d) If the (d2,r) ordered pairs form a linear relation draw the

j 'straight, line and find the equation of the line.

(a) ((0,0),

(b) ((0,2),

(c) ((0,2),

(d) ((1,1),

(e) ( (1,0),

(1,2), k214-)7 (3,4), (112:, ;)).

(1,3), (2.,6), (3,11), (4,18))

(2,0), (1, (2, 4))

(2;10),:(3,25), (i, 242),

1, 41),_ (2,7), (3,26), 8117))
5. If we consider the domain of d to include all positive real nuthbers, use

your mathematical model to calculate the values of the period that corres-

pond to the following values,of d.

(a) d = 50 cm

(b) d = 100 cm

(c) d = 500 cm

1 (d) d = 1000 cm
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0,4

4. -The Parabola

In the chapter on linear functions we learned-that coefficients such as
I

m and b in an equation of the form y = mx + b could.be used to descrlbe a

line. We now have an equation of the form y = mx
2

+ b , and we are using

this equation to describe a curve. The m in this case is not the slope.

,Even though m is a numbers the ratio of "rise" to "run" for our 'curve is not

constant. Since we hake reserved these letters, m and b , to refer to pro -

of a line let us change the.notation.in this new equation so the con-

stants will not be confused with the slope,and Sr-interc pt of a straight line.

Your equation with numerical value for ka and lb will of course not be

changed-. .We will now use the letter A' to refer to the coefficient of the

x
2

term and the lettei. C as the constant term. The equation will now read

y = Ax
2
+C .

Equations of the form, y = Ax
2

+ C, were A and C are real numbers and A is

not 0, are called quadratic equations.

To investigate the influence of A upon the curve we can set C equal

to zero and then determ1ne the shape of the graph of y Ax2 for different

values of A. The tables in Figure 11 give ordered pairs for'various equations

of .the form y = Ax
2

. The graphs of these ordered pairs are shown in Figure 12.

Table II Table III Table IV Table V

1 2
y =

2
-x

1 2
y = -

2
-x Y

=2x2 y=-2x

x Y x x x

4'
3
-2

-1

"0

1

2

4

,8
9
2

2

1

2

0

1

2

2

9
2

8

4
3
-2

0

1

2

3

.4

8
9°

2 ,

1

0

1

9

8

3
-2

1

0

1

2

3

18

8

2

(5,

2

8

18

3
2
1

0

2

3

18

8
2

0

2

8
18

Figure 11
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Once we leave an experimental situation and have a purely mathematical rela-

tionship it is common practicerto let the domain consist of all real numbers

which will yield real numbers for the range. For all real numbers A and x,
- '

Ax
2
will be a real number so the domain of y.= Ax2 is the set Of all real

numbers. This is the reason for the negative values of x used in the table.

If the relation had been of the form y =
A

the domain would be the sat of

all real numbers excluding zero. these tables, x assumes both positive and

negative yalues and the coefficient A has five different values.

From the'tables and the graphs of the ordered pairs we can see that there

is a definite analogy. between the m in the y = mx and'the A in y = Ax
2

.

When the slope m is positive we have a "rising" line and when the slope m

is negative a "falling" line. When A id positIve in y = Ax
2

the curve

opens "up" and when'A is negative it opens. "down". For a line Imi tells

us hot fast the line rises or falls. The numerical value of A tells us

about ihe "flatness" of the curve. Smaller values of 1A1 correspond to the.

`''''"flatter" curves (Figure ,13, (a) and (b)).

(a)

Figure- 13

(b)

0 Curves of the type we have shown are examples of a type of curve knownJas

a parabola.

We must now consider the influence of the consta term C on the graph

of the parabola whose equatfbn is y'= Ax
2

+ C . Ndt ce that for C 0 the

curve will pass through the origin. Figure 14 shows the graphs of five quad-,
, .

ratid relations of the form y = Ax
2

+ C . The value of A is one,for each

relation but the C has been allowed to vary.

4/4
4
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YF

'Pk

The
4

graphs shown in Figure 14 ar

only aketches.of the relations. If you

make tables of orderei,pairs for each of

them and plot them carefully on a sheet

of coordinate paier you can probably

see that all of the curves are the same 7 .

size and the same shape' Take a sheet

of onion-skin paper and place it on the 2
y = x

coordinate paper,. Copy tWgraph of

,y = x2 directly on the onion-skin paper

and then,move this curve until it coin-.

y = x
2
+2

y = x2 +1

y = X
2

y

ciaesewith each of the other curves. y = k2 -2.

This method will show you that the graph

of y = x
2
+ 2 is exactly like that of

y = x
2

except for its placement on the

coordinate plane.
Figure 14,

The graphs of, y = -x
2

+ C where A = -1 and C tthcei on various values

are shown in Figure 15!

<,

4

0

x
2
+ 2

x2 t1

- x2

- x2

- x
2

l
0'

2 ;

,c-,

Figure 15
,

When we set A = 1, all of the parabolas opened upward-and each parabola

had a "loWest" point which we will call the minimum point. 'When A had the

value of -1, the parabolas were inverted so that they opened downward. Each

102
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of these ,parabolas had a "highest" point or maximum point. We have already

concluded that the IAI tells us about the "flalness" of the parabola.' Now

we ,conclude that if A >,0 the parabOlaopens upward anehtts,a minimum point,,

..:andiif A < 0 the parabola opens downward and has a maximum point. For 'all

paJabolas which are graphed from quadratic equations of the form y = Ax2 +

this maximum or minimum point is called the vertex of the parabola. t

NoN.i let us look back at out graphs and see what we can conclude about the

effect of the constant term C upon the graph of the parabola. The C,in

y = Ax + C does not have any'effect'on the.shape of the curve. but does tell

where the vertex of the graph will lie. For example, in the grapat the

equation y = x
2

+ 2 the minimum point Of the parabolwas at_the point where

the graph intersected the y-axis and the coordinates of the vertex were (0,2).

The graph of the equation y = -x
2

- 1 ,bad a maximum point where the parabola

intersected the z-axis and the/coordinates of this,vertex were (0,-1).
r.

You might ask if the vertex must always lie on the y-axis. The answer

to this question is "no". However, All of the parabolas we will ptudy in

this chapter will have their vertex on either the y-axis or the x-axis.

y_

1Xercise

1. The threeourves shown at the right'

are Altches of the graphs of:

1'
y = x.

1 2
-y

3
x

y = tI x .

'-.Platch each curve wi the proper

. equation.

C

2. Describe how the graph of y = Ax2 diffams from the graph of y = x
2

in each,of the following cases.

(p) A ='0

(b) 0< A < 1

(c) A > 1

" (d) ,A4= -1

103
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Make a table of at liast seven' ordered p airs for each of the following

equations. Use both positive'and negative values of x. Draw all of-the

graph0 on the same sheet of coordinate paper and label each.
I

(a) y = 2x
2

1 2
(b) y =

5
x .

(c) y =

(d) Y = x
2

'4. Plot the ordered pairs givembelow and draw a smooth, curve through the

points.

5

,

Is this relation a functidn? Is the converse of this relation a functidn?

Can you think of an equation to describe the relation?

x 9 4 1 0
.

1

,

4 9

y -3 -2 -1 0 1 2 3

,..,
5. For,each of the folloW114 pairs of equations below, plot the graphs using

)

1 a single set of coordinate axes_for each pair. i.4

-. .

(a)* Y =
2

+ 3 . (d) y, = -x
a

+ 1
°

2x
2 *

,
.

:,..,,5
(b) y = -2- x

2
.41417

,

- (e) y = -2X2.- 1

i 1
sy = - x

2
- 3

1 ,y'= 21(2 .. 1
p

(c) y = -2x
2

4,3, (f) y -3x
2

+ 1,
,

.Y= -'2x
2

- -3 y = 3x
2

+ 1
1

i. WhiCh of the relations in Problem5 have a minimum value ana whichhave

a maximum value? What are these values?.

c

The following equations describe curves which are not parabolas.

ordered pars uld Wu,form in each case to show a paratolic.relation?
e

(a) Y° 4 +3 (b) y = x
6

2

What

1 *

7 The Oscillating Spring

This eXtaeriment will extend our knowledge of qdadratic relati,ons. In
, .

xamdning the behavior of the Horizontal` Metronome we found that the length of.

o he blade and the period of oscillation were_connected by a quadratic relet1on-

f the type t = md2 + b . This _particular form of the quadratic relation was
-

ictated by our experimental apparatus 90 its design., ate domain of the rela-

i,,was the set of &values and the range of the relation the set of t values.

104
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In many cases,.the relation,generated by the experiment is not a quadratic.
%.

However, the converse of tt;e relation mAy be a quadratic., Irt 'tilts -situation)

4the method9 obtaining the mathematical model from the data must be altered.

Thei.Lsent experiment will illustzlte.th9s. We will investigate the role

played by the converse of the relation which arises from an analysis of the

experimental data.

Springs are simple mechanical

signed to be squeezed together are

to be stretched are called tension

devices found most.everywhere. Those de-

called-compression springs. Those meant

springs. A tension spring may be made to

perform in an anUsual way as follows. Suspend the spring ift.a vertical posi-

tion and hang a mass%s't,the lower end. After pulling the mass downward and

releasing
,

the'mass'and spring will oscillate up and down over. aneover
3 `41%.

again,, for a time of several minutes. The general arrangement is shown in

Figure 16.

a
Figure 16

One important ..itriabfe''in this situation suggests itself immediately.- Itle

is the period of4the oscillation. *will recall that iVtne,motion repeats

itself in equal time intervals, this 'time interval between any event and the

moment that same event occurs again is callbd the period. For the.oscillatin%

spring the period can be determined by recording the time between successive

trips of,the,massto:itslowestpoint.

As always, all the possible variables which could conceivably influence

the period must be'listed and examined. Some of the possible influences upon,

NI.
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If

the period are: the size and type of spring,psed; the mass of the object
...-' ; .

suspended from the spring; the total distance through which the mass swings,
. 1

from one extreme to the other; the temperature.lof the spring. One, and only
/

one, of these influences must be allowed to change during tte experiment.

The other variables must be kept constant so that whatever their influence
so.

,

upon the period may be, it will not be changed during the course of the ex-

periment. Therefore the period will depend on the physical quant ity we let

. vary.,
i.

4 Only a little experimentation is required before discovering that a'change
40

in the mass suspended from the spring has a decided influence upon the,peridd

of osci11.0Zon of the bpring:1 ThiSdoes'not mean that the other variables
,

which are held constant do, not influence the periodptut only that these will

samehave,te same influence upon.the period during the expeimen t.

When a varietyOT masses are used on the spring there _corresponds a def-
.

inite value of the period_to each mass. _Two columns of data-are needed, one

for the mass ond ihe other for the .period: It will be.convenient to use 100,

2064 300, :..,,1000 gram masses, thus providing ten load'Valaes( of:the
4

domain. If standard masses are not used, the masses of the objects that are

used should be measured in advance. A single period is not easy to measure.

0

Fifty consecutive periods, however, are easi)y timeq witlyEi stop watch. When

this time interval is divided by 50, the time of a single period is obtained.

The appropriate columns of'data are as follows: The first column for

the, mass in grams (-/ ), the second column for the number of oscillations,

the third column will show the total time in seconds, and the fourth will

aist,the period (t). Each column shoulcPhave its appropriate heading. Pat-
1

The collection of mass-perida pairs (1,0 shown in the table is a rela-

tion.,tAs with linear relations, much maybe learned by graphing the relation

on coordinate paper: Since it has been decided in this experimejft to let the.

tern your table after fh table illustrated in Figure 8.

set of masses by he domain of'the relation, mass values (i ) sh uld be

plotted alqng th horizontal axis. The range.of the relation, the period

(t), should be p tted along the vertical axis.

106
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A

4.
4.8 'The Physical Mbdel

1.

Once the data pairs are plotted on coordinate paper, let.us seek the sim-

plest possible model that will describe the behavior of the oscillating spring.

A6 before, we areinclined to connect the points in some fashiqn. If straight

line segments are dra'wn from point to point, we are assuming something about

the behavior of the.spring fOr masses intermedi§Lte to the values actually em-

ployed in the experiment. That is, we are assuming the relation is linear

between points: If; on the other hand, a smoothly changing durve is drawn

through or near the points, we are asserting a dlfferent behavior for the

spring for intermediate mass values. Our physical intuition may tell us that
t

in all probability- the smoothly changing curve is the 'best model. Whether this

leads to a simple' mathematical model or not remains to be seen.

As befo e, the,drawing of a single curve through or near the points takes

account of certain experimental inaccuracies in the data. Experimental inac-

curacies may cause a slight displacement o a point one way or another.. The

desired curve should go through or near e p ints as smoothly as possibLe.4

The smoothness requirement arises o from ur f4elings about-the physical

situation. Your graph of eribd plqtte againk load should look similar

tolFigurB 17:

A

Figure 17
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At this,point as in the Horizontal Metronome we will attempt to develop

a mathematical model (equation) which represents the physical case,accurately.

Our results clearly indicate that the period (t) is not a linear function'of

`the. load ( 1 ). Can we find a new variable 'related only to the load ( )

ps 4

which is a linear function of the period (t) ? Since we are looking for a

simple.coMbination of 1's which when plotted against the period will give a
.

straight line, let us try the volution which was successful in the metronome

case. hence we a plot'of the ordered pairs consisting of the load

squared and the period (12,t). The collection of values of 22 is.the domain

and is plotted along the horizontal axis. The period is plotted along the ver-

y( tical axis. If a line can be found V.) represent this new graph in a reasonable

£
2

way, we, can state with assurance that t will be linearlvelated to k . Your

plot should look similar to the one in Figure 18.

sc

1,

Figure 18
.

,

It is immediately evident from our graph thti, the load squared /s not
,

z
c

d u

linearly related to the period. That is. t i m £2 . Our first guess has.led
,- - ....

us down a blind alley. The situation is more complex than we at first sus.

pected.

,
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,The Oseillaing Spring Converse Relation

The problem now is how do wee proceed from :here. It is obvious that using

higbersbwers n" of 2 will onligive us a, greater bending when we plot

wi :n1,,t2 or red pairs. Let us see if'we have missed something by lookihg at f
our graphs of WO and (1 ,t) fi-om the two experiments. Similar graphs are

plotted side by side in Figure 19.

.

length (d)

Horizontal Metrono.me

a

I load (f)

Oscilla4n3 Spring

igure 19

t

e .
.

The immediate difference is ttlat 'he Horizontal Metronome graph (Figure 19a)

is bent so that it_openS ipward. In o present eXperimeni the curve )sends so
, -

that it opens down. In other words; th
/

i, o graphs are of the same approximate

.Y7shape but they are oriented differentl with respect to the coordinate axes.

Is it possible. that this different orientation eouldl,be the factor we have

overlooked? .,

. .

The only experience we have had with re-orienting curves was in the chap-

ter on Falling Spheres when we discussed relations and their converses. There

Our reiiiIon was a straight line and its converse was alsd a straight line

oriented differently towards the horizontal and vertical axes. A graph of a

straight' line and its converse are illustrated in Figure 20.

10,9lib.
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Figure 20

If we construct the converse of our ( ,t)ograph it is possible that the new
.

orientation will be similar to the graph found for describing the Horizontal

.111etronome. We know that in the case of the Horizontal Metronoine a linear rela-

tion wad found between the sAuare of doiain elements and the corresponding %,
.

. ,

elements of the range. lience,we_may be able to find a simple relation which

will describe the converse in the present experiment. There is, of course,

no guarantee.thiayill work,,but it is worth a try

A simple and direct method. for finding the converse rglation is to ex-
.

change the elements of the domain for the elements of the range. To generate,

the converse in the present experiment plot the .period (t) data along the

horizontal axis and the load ( ) data alOng the vertical axis. The new

graph will consist of period-load pairs (t, Q ). A plot or this newielation

is illustrated in Figure 21. It is the graph of the converse of...the original

relation. You will note that interchanging the order of the data pairs inter-
.,

changes the axis labels also, since they'refer to the physical situation.

t"

4
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Figure 21

4riod
(T)

We immediately recognize that this graph has an orientation very close to the

graph of Figure 19a which opens in an upward direction. We now proOeed in Our

analysis brplotting a third relation composed of (t2, I) pairs . A new column

of your data sheet should be headed "period squared" or t
2
, and the appropriate

values calculated for each of the original values of t. Now plot the new

2
(t A ) points on a fresh sheet of coordinate paper. t

If a line can be found to represent this new graph in a reasonable way wek-.-.. . .

can state with assurance thatAt
2
will then beta linear function of Z . , Uti! -.

izing the slope-intercept exptession for a line we may then write in general

terms that / = mt
2

+ b . Here as before, m is the slope of the line and b ,

is the intercept with the, vertical axis. If Srou are satisfied that. the plotted
v."

-1 points can be represented by a line, the expression J = mt
2

+ s the equa-

tion of the line.

. We now have to determine if the equation of the line can also be used to

represent the (t, /,) graph of our original data. Make a new column on your

daft sheet, "load (1 ) in grams -- calculated". Use values for the period.

actually4obtatted in the experiment and insert in the formula

= m t
2 +b

arid compute the; associated values of / . Your values of m and b should be

111 R '
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used in the equation.

Graph the ordered pairs formed..by the (period,calculated load) relation

on the same sheet of coordinate paper as your (t, t ) graph. Use solid circles

to mark.these calculated pints. Connect the calcUlated points with a "dashed"

curve. If the mathematical model is a good one this new curve should have a

close resemblance to the experimental curve. We still have to consider any

,restrictions on the domain. The mathematical model will give us the load nec-

essary for alt period we desire, however the spring may not be capable of

supporting such a load. Once we enter the world.of generalizations we can

extend the domain to include all real numbers, but as long as we remain in an

experimental setting, our domain is definitely limited by the equipment being

used.

a

Exercise 4

The table at the right shows the

experimental data for.a new bsCi]re7

latipg; spring. The load (

grams was fixed, and then the

corresponding periods (t) in sec-

onds were measured.

+.4

(grams) (sec)'

2.5 1

4.0 24

26.5

10.0 4

14.5 5

'20.0 6

26.5 7

34.0 8

1., Graph the relation and its converse on separate sheets of coordinate
. .,

paper. ti

-

.
.

, ;

-2. Graph the (t2, ,t ) relation. Draw they "best" straight line and obtain
(

' the equation for £ .

-f.
ti

',3. Use yqui equation obtained above kcalculate values of the load in grams

for each value of the operiod in the range df the experimental relation.

,.... Compare the calculated and experimental values of the load.

<-\

4.10 RelatiOns and Converses

It was shown that our choice of order for t and £ had yielded the con-

verse of the parabola. It isdvery rarely a4arent.at the begi4.ing of en

I



experiment which order will yield the most direct path to the mathematical

Model. The order makes no difference in the linear case, but it often c,m-

plicates our efforts to find expressions for nonlinear relations. The con-

verse can in many cases simplify our search for a mathematical model.

A graphical representation is probably the most helpful means of recog-f

nixing relations and their corderses. The complete parabola and its converse

are pitOured in Figure 22.

converse' -

parabola

et

Figure 22

x

The converse.ia obtained by interchanging the domain and range of the relation.

The Iwo; domain is still plotted along the horizontal axis and the new range

'along the vertical axis.

There is one other important point to be made. The mathematical models

we have de'eloped in the last two sections are more than relations connecting

two variables. In every case each element of the domain has associated with
,e

it exactly one eilement in the range. Each length of the metronome blade and

each massonthe spring yielded, only one period and each distance-,on the wick

had only one time interval. The single - valued nature of these maematical

models1DUts them in the class of relatil s called] fuLtions. The full pare-

bola.on tle left side of Figure 22 is'an example of a function. Each value

of x ias associated with in only one value of y. ,The converse relat9n of

11 b 2 0 .

I



0

Figure 22, however, is not a function. Each value of x,has two values of 'y

associated with it.

Exercise 2 .

1. In the.series'qf graphs shown in the.figure 4the following page, pair

each graph with another so that in each case you have a relation and its

eonVerse.

"'-f4hiehOf the graphs in the figure represent functions?

3. Which pairs of graphs obtained in'Problem 1 represent one-to-one functions?
e

(Note: If both a relation and its converse are functions, then these two

relationa are called one-to -one functions.)

L
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4,11 Translation of,the Parabola

We have already discussed equations of the form y F Ax
2
+ C a d have

s4en how the coefficient of the x
2

term determines the shape of th curve

and the C term translatea the curve up or down. In this section we will study

relations defined by equations of the form

y = A(x - k)2

where A and k are nonzero constants,. As an, example, let us draw the
a

.2
r...= 2(x - 3).

'11

Letthe 'domain be the set of all real numbers. A table of values and
, a

of the graph are snown below (Figure 23).

. .

x ... 1 2 3 4

y= 2(x-- 3)2
.

41.41 0 2 8 (1,8)

raph of

a sketch

(4,2)

(5;8)

(3,0)

Figure 23

This graph is shaped like the parabolic relation We pave been at

except that the vertex is not on the y-axis. In Figure 24 the graph_--
y = 2(x - 3)2 is compared withthat of y = 2x2.

Figure 24

116
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Use a sheet of onion-skin paper and copy the graph of y = 2x
2

. Shift this

4 paper So that the graph of y =,2x
2
is over the jraph of r= 2(x - 3)

2
. The

,

two'graphs will be congruent. That is, the graph of y = 2(x -.3)
2

is the

same as the graph of y = 2x2 but is 3 units,tothe rg11t7 In the same

way we could verify that thp graph of y = ?ex + 2)2 is 2.units to the left

1 2
of the graph of y = ..c

2
and has the same, shape as y 5 2x,

If we draw the graph of the equation of y = 2(x - 3) + 2 and compare

it with the graph of y = 2(x - 3)
2

, we see that the shape of the 'graph has
.

not changed (Figure 25).

The graph of y =2(x - 3)2:4-2

is obtained by moving the graph Of

y = 2(x - 3)
2

upward 2 units. Simi-
.

larly, we can.show that the graph of

y = 2(x + 2)2 - 3 can be obtained

. by-moving the graph of y = 2(x + 2)
2

downward 3 units.

Finally we recall that the graph

' of y = 2(x - 3)2 is the same as the

graph of y =
2

shifted to the

right 3 units. Frbm this we can'see

that,the graph of y = 2(x - 3)
2

+ 2

is the same as the graph'of y=i2x2

by " moving the graph" to the right

3 units and upward 2 units.

In'later.courses you will learn thSt it 4 always possible to obt'ain the

graph of

.

y =2(x- 3)2
I

° I

Figure 25

from the graph of

y ,= -

y =
2

+ k"

a'

711

by moving the graph of y = Ax
2

horizontally h units and vertpally k units.

bcercise 6

1. For each of the following, describe how you can obtain'the graph;of the
4

first Ifrom the,graph of thsessecond equation.

(a) Y = 3(x 4) Y =
L.2

3x
2

(c) (x + 1)2; y. = -

1
(b)' y =-2(x - 3)

2
; y = (d) y = ,5(x + 7 ! )

2
; y = 3x2

117.
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2. Set up IaLtable of at'ieast seven lordefed pairs of the relation below,

and then draW its graph.,

y = 2(x + 2)2

3.____ Complete the following table of ordered pairs for the equation

y = 2x2 + 8x + 8.

x -5 _ -4 -3 -2
.

-1
. 1

2-

y 18 4.5_ .

4.. Draw the graph of the equatioh in Problem 3 and compare with the graph
_ - - _

drawn in Problem 2.

5 Compare the location of each of the following graphs (without draWi4.

the graph) with the location it would have if it were in the form y = Ax
2

(a) y = 3(x - 2)2.- 4. (c) -=-3r = i(x - 2)2 2.2

(b) y, = -(x 3)2 + 1 (d) 3r,-= -2(x + 1)2 + 2

6. Find equations for the following parabolas.

(a) The graph of y = x24

(i) mdved 5 units to the left;

(ii) moved 2 units doWnwiird;

(iii) moved 5 units to the left and.2 units downward.

(b) The graph of yo= -x'

(i) moved 2 units to the left;

moved 3 units Upward;

(IA) moved'2 units to the left'and 3 units upward.

(c) The graph of y = x2 loved 2.- unit to the right and 1 wilt
3 2

downward.

(d) The graph of y = 2(x + 7)2 moved 7 units to the right and

4 units upward.

7.. Setup.6 table of at least 7 ordered pairs for the relation below,

and theri'dra its graph.

y'= (x - 1)2 - 4

8. Set up a table of at least 7 ordered pairs for the following rel ation,

an( draw its graph".

y, = x
2

- 2x - 3

Compare this graph with tfiat_drawn fdr Problem 7.

118
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4.12

r

Summary

In this chapter, we considered a number of ixperithental relations. In
_

*Etch experiment we

come, and arranged

of the.experiMent.

cofthe relation by

to the-data points.

considered possible variables which could drfaCttlit-OUt-

things to hold all but one 6ftbese 'fixed during the course

From the dataLje_olbtained h,graphical,(physical) model

drawing a smooth curve which seemed to give a best fit

We then considered various new relations between a

AlbaiatiCal model, of- the relation.
. . . .

74'7'7 --abe-experiments in this section gave rise to paxaboliC relations and

10 to -some discussion of qUadratic equations. '

ate;

Sryy

1

.t

a

ft
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A.

Chapter'5

ANALYSIS OF NONLINEAR FUNCTIONS e-

N.

5.1 Introchictii4.

.

Nonlinear functions and their
'

graphs open a door to many exciting

mathematical,ideas.; In'this chapter you will investigate a few of these

ideas through experimentS.

The slope of'a line is familiar to everyone. But'what do we mean by

the slope of a curve? Can such a slope 14defined without cdfiTusion, and

is it impFtani? You can probably guess that; the answers to these,questions

are going to be "yes". The concept of the slope of a .curve is an extremely

important one, and will be developed in this chapter. wd will do this by-

making an analysis of a ball rolling down an inclined plane.

The continuing use of quadratic graphs may have left an impression

that there are no other nonlinear curves. The simple lens, hdwever, intro-
.

duces the hyperbola -- a different curve with interesting, new properties.

Finally, the floating magnet will introduce a curve yhich defies simple

analysis.

5.2 The Inclined Plane

In this experiment the motion of se bail down an inclined plane is to

be studied. A ball rolling down a plane will move from side to side as

well as down the incline. Since the distance the bail rolls is a necessary

measurement, side motion yould complicate the data. To prevent this lateral

motion, ye will use a V-shaped piece ot bluminum as the "plane ". This plane
tAr _ °

iff inclined, to the horizontal by a Small angle and a billiard hall is used

as the rolling body. The general arrangement of equipment is shown in

Figure 1.

r



. Figure 1

In the Falling Sphere Experiment, the phere quickly reached a "terminlal

felocity!! and from, that point it fell With a constant speed. As the ball

rolls down the plane, its speed will be constantly increasing. The speed Ork

the ball at the end of a three-foot roll will be greater than its speed at the

end of a roll of.two*feet. In this experiment we are going to measure the

time it takes for the ball to travel different distances. We will use only

one ball throughout the experiment, so any possible differences caul by

balls of different sizes or weights will not concern us. The angle of in-

clination of the.plane is one part of the experimental arrangement Which has

a great influence on the time taken for the ball to roll a given istance.

A ball rolling down a steep incline will cover a fixed d ace in
A

ett
less time than a ball rolling down a slight4nCline. Set e plane at a

small angle to the horizontal and keep it at this angle roughout the ex-

periment." Asmall angle will "slow" the ball enough to ake time measurements

reliAively easy.

In this experiment we are going'to allow the ballIto r 11 certain fixed

distances and;'using-a stop watch, determine the time that it takes to roll

these distances. We could-release the ball from the toy of the plane and de-
.

termine how long it takes for the ball, to reach a certain mark on the plane.

A second method would be to release.the ball at certain distances from the

bottom of the incline and determine the time for the ball to reach the bottom

of the plax, This second method has certain advaqages. You will always know

exactly where-the distance interval ends.

The V-shaped piece of aluminum should be about 2.5 meters long.

122



Measuring from the bottom of the. inclined portion of the plane; make marks

on the plane corresponding to 15, 30, 50, 100, 150, 200 and 240 centimeters.

Set the balron the 15 centimeter,mark and use the stop watch to determine

the' time taken for the ball to roll to the end of the incline. It is impor-

tant to release the ball and Start the watch at the same time. A convenient

method is to place a,finger on the top of the ball and hold the stop watch

in your other hand. A few trials will enable ypu to release the ball at the

same tim .as the stop watch is started.

The,time taken for the ball to travel to the bottom of the plane will

the distance from the bottom of the plane. The distance measure-

erefore, form our domain, and the associated time intervals will be

.
Notice that this experimental procedure is the converse of that

depend o

ments, t

the ra

used in he Falling Sphere Expe ent. To thp Falling Sphere Experiment we

picked c rtain time intervals (domain) and determined the distauAe traveled

in that ime (range). Repeat the procedure for each distance, and record

in.tabul r form. See Table 1. Make three'trials for each distance. Calcu-

late and record the average time taken for each distance. To do this it is

necessary
1

to add the times of the three trials and then divide by three (the

number of trims).) ft

Distance
(cm),

rial 1
e

(sec)

Trial 2
Time
(sec)

Trial 3
Time
(sec)

Average+

Time
(sec)

Arbitrary
Time

(sec)

Calculated
Distance

(cm)

.

+.

Table 1

I
From this data form ordered pairsof the form (distance, average time).

_Now select suitable scales 'or distance and time, and plot the ordered pairs.

6ee Figure 2. Again, a physical arpu-
r

.entallo-§ip'us2to-constrna the physical

model by joining the plotted points in

some manner. Every distante along the

incline plane will have a time value

associated with it. A smooth curve

through or near the experimental

'points is a realistic physical model

of the data.

r23
,

I 2 !I)

Figure 2
9



5,3 Analysis of the Experiment"

In making an analysis of an experiment we attempt to relate the inform-
,

ation to something from our past experience: III the Wick and Horizontal

Metronome Experiments we met parabolic relations for the, first time; we

found a way to obtain a linear relation and then used our knowledge bf linear

relations to obtain an equation. In the Oscillating Spring Experiment, our

first attempts at finding a linear relation met with failure. We then did-

covered that the converse of the relation had the same orientation as the

curve found in the Horizontal Metronome Experiment. Once we relized this

fact, we were able to relate the graph to something familial-and obtain a

mathematical model of the experiment. The physical model of our present

experiment, as shown in Figure 2looks similar to the one found in the

Oscillating Spring Experiment. tat us try to repeat the successful procedure

used in the Oscillating Spring Mcperiment.

Form the converse of the distance-time relation. Interchange the domain

and range such that the domain is now the set of time values, andthe range the

set of'distances. Use these ordered pairs to plot a new graph. When graphed,

the new figure will be similar to the curve of the Wick Experiment. We pre-

viously found that it was convenient to look for a linear relation between

sane power of the time (t) eat thedistance (d). When found, this gives ut3

enou*,inforpation in the proper form to directly write down a likely,time-

distance relation.

Square each of the time values and construct ordered pairs of the form

(t2,d). use the horizontal s as the t
2

axis, and the vertical axis as

the axis. A line drawn hrough these points and extended will come very

near the origin. Tfiis -hould be obvious since at zero time the ball will

not have moved. Us the point (0,0) as the fixed point, draw the 'best

straight line" thro h or near the other points, as in Figure 3.
, -

,(time sec

Figure 3 .
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Compute the slope, m, of the line. We know that all lines which pasi'throUgh

the origin have an equation of the form y = mx. That is, th'e''value the
_

range is equal to the slope times the corresponding value of the domain.

Similarly, from Figure 3 the distance (range) is equal to the slope times

the time 'squared (domain). This gives the equation

We now must check this equation to see i.it can be used as a mathema-

tical model for the graph of the (t,d) relation. We can insert values of t

in the formula d = m- t
2 and calculate lavalue pf d for,each value of t.

For ease in computation, delect;values of t which are integers. For example,

if' the time taken for the longest distance was 7 seconds you should cal-

.

culate a value of d for every second from 1 through 7 seconds. Record these

,values in the next two columns of your prepared data sheet. Label the

columns flarbitty time (t) in seconds" and "calculated distance (d) in centi-

meters". Plot the o ciered. pairs formed by these two Columns on the same sheet

of toordinate paper 51 our original (t,d) curve., Connect the calculated

points with a dashed lin . The two curves should compare favorablyc-

Our equation ca be used as a.mathematical model to describe the be-

havior 9f a ball rolling down an inclined plane. There is one modification

' which shoilld; be made. HA.; before, our equation was derived by use of a linear

relation where the letter m. has a special meaning. In our previous use of m

it has denoted the slope of a line. Nag:our equation is not a line, and
ae

therefore m as the slope'bf a fine would'have no meaning.

Let us change the notation of our equation so the letter m does not

occur. If we replace m with the letter A, weWill not thing of this as repre-

sentini tt*"slope of the curve°. Our final mathematical model is

d =At
2

.

Exercise 1

1. Use-the equation d'',=-At2. 14th your measured value Of the coefficient

A, calculate distance values that correspond to times of: 0, 1, 2, 3,

4, 5, 6, 7 seconds.

2.' Draw a vertical line on a piece of graph paper to represent the, inclined

plane..' Starting at the top, mark to scale the calculated positions of .

the ball along the inclined plane: Label these positions with the

corresponding tides.

125
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3. On.the drawing of the inclined plane in the exercise above,eery care-

fully mark the position you thiniltthe ball will occupy at a time of

2.5 seconds. Using the equation, now calculate the position of the

ball for this time. 'Compare this point with your estimated,positioL,

4. Multiplying your value of "A" by four will fiim a new equation. With

this equation calculate distance values for times of Cr, l, 2, 3 seconds.

5.4 'Slope of a Curve at a Point

At this point we have a graph of our data and a physical-and mathema-
.

tical model which are abstractions of this data. There are many more aspects

of.the curve which are of interest to us. Mathematics; as the physical

sciences do, sets up methods by which one curve or physical system can be

cOmpared with another.

Take a look at the graph of the parabola in Tigure 4. 'In the region

of the origin the curve is quite "flat. That is, it is not rising very rapidly.:
0

Small time intervals along the-horizonEal axis correspond to very small

changes in distance n the vertical axis. In t s regime it behaves similarly

,to the bottom of mixing bowl. As you mo out from the origin, the graph

steepens and rises more rapidly for equal intervals along the horizontal

is. The same thing happens as you consider points farther out from the

bott.fl .f our mixing bowl'. The problem before us is how to describe this

behavior p -cisely. r""

Place you ruler to the right of the cube on your graph and select a'

shallow or small lope. Move your ruler parallel to itself until it dust

kisses the curve. See Figure 4. The ruler ehould just touch the curve and

not cross it. The .int of contact should, be very close to a point. With 0

the ruler in this .sition, draw a straight line and mark the point where

it ,touches the c e. Now you have constructed a line, /1, ',with a partic-
4

ular slOpe, and i touches the cur4 at only.one point.

Construct a second line, 12, with a much steeper slope. Use the same

method as described above. Figure 4(c) is an illustration of tlie relative

position of two possible lines.



.Figure 4

It is dentithat when the steepness of the kissing li is. small,

the curve is very flat and rises slowly for intervalg along the horizontal

axis. When the curve is rapidly rising, the-steepness of this line is large,

We haw have a quantitative way of describing the'steepness of a curve. The

steepness of any curve at a point can be given a number. Let us define the

slbpe of a curve at a point as the slope of the straight line Which just

touches the curve at that point. A'curve is twice as iteepr t one point as

it is'at another if the'slope of the kissing linecat the first point has

twice the slope of the kissing line at the second point. .

To firmly fix these ideas, take a point at approximately the'100 cm

marlisvon the distance axis and locate the corresponding point,on the curve.

Measure the slope b- drawing a line just kissing the curve at this point.



1, Make a few trials-by angling your ruler before actually drawing the line.

Compute the'slope'of the line. As stated above, this is the slope of the

curve at the point where the line touches the curve. The t ope of this
. ,

curve has a particular physical significance. In this case, the slope is

a dqtance (d) divided by a time (t). Another interpreta on of distance/

time is velocity. The question naturally arises as to w at velocity does

thethis slope measure. Consider h portion of the curve near the origin where

the ball has covered a short distance aid note the slope is small. Also,

recall that near the origin the ball has a very law velocity. As you move
l':.

out from the origin along the distance axis, the slope increases; that is

the velocity increases. observations, have verified this. The greater

the distance the ball t ,eels, the greatq t4e velocity. It is logical and qpr37
also correct to interpret the slope at a,pointas proportional to the velocity

the ball will have after traveling the distance d. In general, t:he'slope of

a distance-time graph at the point (d,t) is the velocity the object will

have after traveling the distance d.

h-roise 2 \

1. Carefully draw a graph)of the parabola y = T1 x
2
, using integrally

spaced values of x from -6 to +6 inclusive. Grhphically find the

slopeof the parabola at,ihe points for which x equals 6,-4:2, 0,

-2, -4, -6.

2. The straight line is characterized by a constant slope whereas the

quadratic has a continuously changing,slope., It is possible to find

' the slope for many paints on the curve, and hence, generate a new

function which would consist of ordered pairs compos,ed of slope and

the elements from the domain.

From the slopes found in Problem 1, form a set of ordered pairs

(x, slope). On a sheetof graph paper, draw coordinate axes-and

plot this set of ordered pairs. What conclusions can you draw

about this new function? -

3.

°

Campare the slope or the curve in Problem 2, with the coefficient
2

of*x--in Problem 1.

5.5 EXperimentai Measurement.of the Slope

s
In the previous section we have defined the slope of a curve at a point
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to be the slope of the straight line which just kisses the curve at that

point. The dimensions of,this slope are the same as the dimensions of vel-

ocity. However, we have not proven that this sldipe can be interpreted as

velocity.

The ball has aTelocity at each and every point as it rolls down en

inclined plane. If we could but measure this velocity by sane experimental

means, we could compare the result with the slope measurement taken from the

gtine-distance graph. If the-two are found to be the same, we can then say

With conviction that the slope,.cif the graph at any point is truly the velocity

'ttZ:bf the ball at that point.

All that remains,is to find Away to measure the, velocity of the.ball

experimentally. For this purpose a four-foot horizontal section of the

aluminum angle is butted up against the end of the inclined plane, as shown

in Figure 2. The two grooves should mesh as smoothly as possible. This

smaller section of aluminum angle should be carefully leveled after placing

it on two globs of modeling clay. The leveling can be accomplished easily

by placing the ball man the track and'seeing if it will roll one way or the

other. The horizontal section of track'provides a means for "tapping off"

any velocity we choose. The ball rolls'down the incline,increaaing its

Velocity as it goes. When it rolls onto the horizontal track, the velocity

no longer increases. It remains constant. The unchanging velocity of the

ball, while on the horiztintal.section, will be exactly the same as the .

velocity the ball had the-toment it left the incline.. This velocity is :

computed from the measurement of the time needed to cover a set distance on

the horizontal trnak.. The value of the velocity is given by the quotient of

the distance and time (velocity = distance/time). .
. e -

This velocity can be adjusted by starting the ball at various positions

up the incline. First, however, let us commit, ourselves asto the velocity,

expected. Go back to your graph of the time-velocity relation and find the

point'corresponding to a distance of 150 an., At this point, draw the kiss

line. Measure the slOpe'of this line and express it as a velocity,in centi-
;

meters per second. This is the velocity the slope concept predicts for us

after the ball has been allowed totro11.150 am down the incline. This is

- the velocity'we will measure experimentally.

Mark a length of 100 an. along the horizontal track starting from the

end of the incline. This is the distance over which the motion of the ball

will be timed. Release the ball from the 150 an point on the incline, start.

A
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the stop watch the moment the ball enters the horizontal section of track,

and stu the watch at the moment the ball liasses the 100 cm mark. Try_this

a few times before taking data. Now make three,trials and record the

measured time inteArgls. The velOcity of the ball is now determined by

dividing the distance traveled (100 cm) by the average of the three observed

time intervals. Make this calculation and then compare this measured velocity

in centimeters per second with the previously measured slope of the kiss line.

A1164ing for score experimental error, are ID.ese two figures the same? If

these two figures are the same, we have proved our point. ,However- if these

two figures are not the same, yo44shOUid check both your kiss line and your

measured Velocity. The slope of the time-distance graph at a point is the

velocity of the ball at that point!

, It is worth noting that our procedure would enable us,to directly measure

the velocity of the ball after any desired distance down the inclined

.plane. This would enable us to.compare the velocity to the slope of the line

which.kisses the curve at any point.

go+

5.6 The Simple Lens

The use of a lens is':-.ost likely not new to you. Your science teachers

may. ave used_a lens when you studied vision, or in explaining how a camera

works. You know that a lens will bring the rays of the sun to a focus.

If you mount a lens on a meter stick with a little modeling clay and

"aim" atsome distant object, you can find the image of this object on a

white card on the other side of the lens. The image will be upside down and

reversed left for right, but this need not bother us.

If you point the lehs at some nearby object, you will find that the

cardpwill haVe to be moved to obtain a sharp focus. For distant objects,

however, the image will always be found in about-the same place.

Point4thelens at a distant object outside of the classroom such as a

fituilding or a tree. (Be sure the window is open.) Move the cardboard screen

until you have a "sharp" image of this'distant object on, the card. Measure

the distance from the center ilhf the lens to the screen. This distance is

called the focal length'of the lens -and the position of the card is the

focal point. Make. three determinations of the focal length. Find the aver-
,

a(;-e value of the three trials and use this Value as the value of tilelofocal

length. If you turn the lens'around so the otAr side faces e object, the
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focal length will'be the same. Thus, ajlens has two focal points, one on each

side of the lens, laachoi'whiCh is the'saiie distance from the lIns. See
1

Vigure 5.
o

/Th

e

lens
focal
point

77477-.77--

focal image of
point distant tree

meter stick

Figure 5

We have'seen that for distant objects the image id always formed at the

same'6etance from the lens. For short object distances
'
however, this is not

the case. As we move objects closer to the lens, the image "moves" away from

;th -lens. The relation between Ihe position of our object and the correspond-
.

.j.ng position of the image formed by the len*will be the subject of our inves-

tigation.tigation.

Ci

We will need a brightly illuminated object for the experiment. Cut a
p. °

-small triangle in a piece of cardboard. Insert a pin into the base of the

open triangle'. This pin will be our "object". Darken the room somewhat

during the experiment and place a flashlight directly behind the triangular

hole°to provide illumination. Obtain a piece of adding machine tape about

e1*tWo meters long. Fasten this tape to the floor and place the,lens at the

center pf the tape. Ti-y to arrange the lens so that'i%s;height,is about the

same as the height V the object. The experimental setup.is shown in Figure 6.

O

ie

Figure 6.
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.ToOpecome familiar with the general behavior of the lens, first place

the object so that it distance from the lens is about twice the focal length.

Place the flashlight directly behind the object and turn off the other lights

in the room. Move the Screen until you have the image in sharp focus. As

the object is moved towards the lens, the screen can be moved back to-find a

new position of sharp focus. Now move the object and flashlight so that the

distance of the object from the lens is slightly less than the focal length.

It is now impossible to obtain an image on the screen. We_noy know that our,.

object distances must be greater than the focal length. When we place the

object at about two focal lengths from the lens you should find the image posi-

tion also about two focal lengths from the lens. As we move the object farther

from the lens, the image moves closer until, for very large distances, the

image is at the focal point. Thus, our object and image distances will always

be greater than the focal length. carefully measure from the lens to the focal

point on each side of the lens, and make the twp corresponding marks onthe

adding machine tape. These willbe our two reference.points,.
are

We wia measure distances from the focal po1np and.not from the lens.

On the "object side" of the lens, use a meter stick and make a mark on

the tape every centimeter from the focal point to the end of the tape. Repeat

this process for the image side of the lens again starting from the focal

point. Place the object on the last centimeter mark. Always remember to
*

move the flashlight with the object so that you get about the same illumina-

tion each time.-On the other side of the lens always move the screen until

you find the point Of "sharpest" focus. Make a two-coluffin table; label the two

columns "object distance (X)" and "image distance (XT." The symbol X is used

instead of the letter 0 so you will not confuse this with the number zero.

Be sure to measure the object and image distances from the focal points.

The measurements.are to be made as shown in Figure 7.

image distance

X 1 lens 14XI
object distance

f °cal focal
object polo, point

Figure 7.
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After finding the location of the idlike when the object is at the last

centimeter mark and recording this information in your table., move the object

closer td the lens. The object should be moved two centimeters at a time,

until the image is clearly out of focus. Move the screen to bring the image

back into focus. Measure and record the new object and image distances. As

you move the object closer to the lens, the screen will have to be moved away

. from the lens. For each reading continue to move the object (and the flash-

light) two centimeters at a time until the image is definitely out of focus.

Then move the screen until the image is back in sharp focus. Repeat this

process for a number of trials until the screen isecho longer on the tape-.

Once we have collected the data, we will plot the object-image ordered

pairs (X,X'), draw a physical model, and then attempt to find a mathematical

model to represent and explain the relation. Notice that this threefold oper-

ation has been our plan throughout the text.

(a) Obtain data'relation and graph.

(b) 'Construct physical model (best line,or curve).

(c) Find mathematical model.

'Set scales On the coordinate paper so that the graph will "fill" the

paper. The image position depends upon the object position. The set of ob-
. .

ject positions is therefore-the domain and is plotted along the horkzontal

axis The set of associated image positions forms the range and is plotted

along the vertical axis. You probably will have a graph something like,that

shownl Figure 10. Again we have

the question of rill5png the space

between the points': v,is we move closer

to the focal int o the lens, 'theO
image mo ed a y from the other focal

0 point. With every intermediate object

distance there must be associated a

new Image distance. For object dis-

tances about three focal lengths from

U

.0
,

P.

0
the lens or more, it may appear that

0--e!s7-

° 0 0
you can Move the object a few centi-

meters and still have the same image
'object distance' X position. The image has, owever,

Figure
moved a small distance that is often

.) difficult to detect visually. The
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procedure for dtawing a "best curve" seems fully justified in this case. This

curve is our physical model of the object-image relation.

- Exercise r

1, In the lens experiment what is the domain and what is the range ??

2. Does the graph of the relation (Figuree) represent a function? Why?

3. Would it be meaningful to pasi a smooth curve through the ploitei..

points? Why? ,

4. Discuss the possibility of extending the graph of the curve to very

large of very small object distances.

5.7 The Lens Relation

Obviously, X and X' do not form a linear relation. As you recall, we

were able to Obtain an equation to represent parabolic relations by i5nding

a linear relgtionship betWeen some power of a number in the domain and the

correspondinf number in the range. For example, in the horizontal metronome

relation we took ordered pairs of the form (d,T) and from these formed'ariother

relation with ordered pairs of the form (d
2
,T). This gave us a linear rela-

tion from 'which we were able to find an equation to represent our curve.

4
In this experiment the curve is not linear nor. does it resemble the

parabolic relations. We know, however, that as X decreases, X' increases;

that is, as the object approaches the lens the image moves away. This type
t,

of behavior rules out .forms like (X2,X p. Why? Notice, however fhat as )C"

1 1
decreases, a quantity such as -5-c increases. This means that as 5c- increases,

Xlwill alio increase. Although the relation (X,X1) was, not a linear relation,

perhaps.a set of ordered pairs of the form (1,X') will be. Select elemerits

from the domain (X), form 4) values and then associate with these the ap-

propriate elemehts fran the range 001. Enter the values of 3+,i in a new

column on your'data sheet. Use a new sheet of coordinate paper and plot

the relation formed by this, new setiof ordered pairs (re,X ). The graph of
1

thee points should appear linear. Fence, it and, x' do form a linear relation.

1
If this had not been so we might have attempted pairs such as (-.0,X'), etc.

X-
!,)

your new ,graph ,probably looks like that Shown in ,Figure, 9.

The best straight line through these points shoUld come very close to
1

the origin. For very large values of X, 5c- can be extremely small. For ex-.

ample, we could use the sun as an object. This would make X greater than
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10
12

re
1

an and practically zero. 'By qUr

of the sun WOUld be forted at the focal

Zero, the image distance rwill also be

ing we see that the line, when extended,

should Pass through the origin.

Now, using the origin as a stak-

ing point, diaw your best straight line

through the data points. This is our

physical model of the experiment'. Cal=

culate the slope m of this line.:

We know from our work with linear

functions that all lines passing through

definition of focal point, the image ,

1
point. Hence,, 17when is practically

about zero. From this line of reason-

he origin are of the form y = mx.

Therefore, the equation of our line is

x4 = rap x4

X'

00

000

00
00

O

( o, o )

Figure 9

1

3E

We still must determine if this equation can be used as a mathematical

\-
model of our original curve. Using your experimental values of X, and the

equation campute corresponding valubs forte X*. The calculated value.
A

for m should be used in'the equation. Enter the calculated values of X7,in

a new colmn of your data table. Plot the new ordered pairs (X,X* calc.) on

the same sheet of coordinate paper as, your experimental points. Use 'small

solid circlgs for the points and connect-them with a "dashed" curve. Compare

the calculated and experimental curves. The two curves should compare favorably

We can now say that

X' = m() = -
X X

can be used as a mathematical model of our experiment.

Although both the domain and range of our datfunction were soiewhat

limited, we ave every reason to believe thatytthe above equation is valid for

...all values o X andX4 where both are greater than zero. This cdhjecture, of

..

course, should be tested by further experimentation.

It is important to realize that the symbol "m" in the equation X' =

is not theaslope of the graph of the(X,XO relation. It is, on the other
1

hand, the sloRe-1-4the (5.0X') relation. For this reason, it is best to replace

the symbol "m" by some other symbol that indicatesa constant4alue. But what
e

onstant is it? You have obtained the numerical value of this constant, and it



4

is interesting at this,,time to compare it to the square of the focal length

(f) of the lens that was used. Allowing for some experimental errors, you

should find that m = f2. This is the case, sand we can now write our lens re-
, 6 .

lation in the final form

Our equation now suggests tha't an extremely important generalization

of our lens relation can be made. .Perhaps this equation can be used to repre-

sent the locatioh of the object and image for any lens that we may wish to

use. This turns out to be the actual case, as has been verified in many ex-
,

periments in the past.'

Exercise '4
c-;

1. The f011owing table contains data taken from:an experiment with gases..

Pressure

lb/in
2

Volume

n3

4 169

5 135

10 68

12' 56'
15 45

18 38.
, 20 34

25 25

30,- 23

35 19

gas

4

By raising and lowering the fluid column different pressures can be 13

exerted on the gas contained in the left portion of the tube. As the

fluid column is raised, the pressure is increased and the gas volume

decreases.

fluid
,column

ha__Which plenenti-of the table are the domain and which are the range?

(b) On a-coordinate plane, plot the ordered pairs from the table and

construct a phySical model.

/1
(c) Form a new relation k,V) and plot these new ordered pairs.

(d) Using this information, find the mathematical model which best

represents the data.
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5.8 The Reciprocal Function -

In this experiment'we have obtained the relation

X' =

i2y/ ,

Tilts is a particular example of a more general relation

';'.

k
Y = x ,

where k is some constant.

You ecall that we have studied relations of the form y ='mx.

We call t se relations :`linear" because they grap as a straight line. 'We'

also studied relations of the form y = Ax
2
, whic were called quadratic relar

iions. "Quadratic" comes from the Latin word quadratus, meaning squared. Now

we are concerned with a

as the reciprocal of x.

tion. The grap)i of y =

trenely large values in

)
1.'

relati n of the'form y = k(7c-j. In this case, y varies

For this reason, let u$ call this a reciprocal rela-
k

reveals the basic pattern of this relation. For ex-

thethe domain, the corresponding values in the range are

C-----,tery close to zero. For, extreme small values in the domain, the correspond-

ing values in the range are extremely large. This reciprocal relation is

clearly a function, for to every element in the domain of the function, there

corresponds one element in the range. We can also see this graphically. No

vertical line cuts the curve in More tkian one place.

Let us consider the graph of the relation y = -11 for negative values of

x in spite of the fact that negative values of X in our 3,xperiment apparently

have no physical significance. Now graph y for all possible values of x.

From our experiment, k.= f2, so k is greater than zero. Sink kis positive,

x and y must both be positive or both negative.

Thus, when the domain'of the function

y = is extended to include ell_ real

numbers 0, the graph we obtain is

shown in Figure 10. Why is zero ex-

cluded from the domain and range of

this function?

This more complete relation is

a^ function because we Still have one

element in the range of the relation

which corresponds to each eleftent in

the domain. Note that the damain'ex-
.

eludes only the single value zero.

This reciprocal function is so important

pa,
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that its graph has been yen tbe special name "hyperbola".% All hyperbolas

have two portions, as shown above. Hyperbolas are vary closely related to,

the parabolas we encountered in Chapter 4.

All relations have converse relations, and we should inquire as to the

converse of a reciprocal relation. When we interchange the domain and range

of this relation, we notice a curious thing. When we form the converse, each

ordered pair that we obtain is seen to be the same as one of the ordered pairs

of the relation itself. (Prove this to your own satisfaction.) This means

that the graph of the converse reciprocal relation is identical to the graph

of the relation. This same conclusion could have been found algebraically by
+.

finding that x = .

Without going very far into a more complete physical analysis of a

lens, let it be said only that negative object-values and negative image-

values actually have as much significance as Pssitive values of these same

quantities. Aaiegative X would arise for an' object, placed at any position to

the right of the left-hand focal point. (The light rays are always considered
7

to move from:leftto right.) Similarly, a negative X'is an imagAbdistance

measured to the left from the right-hand fo(cal point. The images that are

obtained in these situations are not the kind that,can be projected upon a

screen. They can, however, sometimes be seen by looking directly into the

lens.

Exercise 2

1. `Does the range of the function X'4 include the value of /P = 0 ?

&plain.' -1 o. a

0

2. Does the simple lens equation X'j.
=

f2

, with the range and

.

domain re-

stricted to the values that, can be obtained experimentally, represent

a function if X and X' are interchaneed?oWhyl2 '.

3. The focal length of the lens found in many caffieras is 50 cm. Calculate

in centimeters for an object at a distance (X) of 1 meter; 10 meters;

1.5 X 10
8
meters (the distance to the M8on); and 5.8 X 1010*metera (the

distance to the sun). 1

: ... ,
. v

I
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4. I.
7

10

2
.3

II.
ID

7 5 x 2

III. v
-10

x - 2
. .

-10
IV. I 7 -2 - x

10
v 7 = 77 T)

For each of the relations above,-

(a) For what value of x will the denominator become zero?

(b) Is it possible for x to be equal to zero?

(c) Find the value of y which corresponds to the following values of

x:

(-8, -3, 0, 1, 3, 4, 7)

(d) Using the values just found, form ordered pairs of the form (x,y)

and plot on the coordinate plane.

(e) Join the points with a smooth curve. Remember thatthere will,be

one number (part a) which is not in the domain of the relation.

If there any number which is not in the range of this relation?

If so, what is it?

(f)

5.9 Translation of Axes

In Chapter 3,. the discussion of linear equations led us to an inve i-

gatiai of the translation of axes. This translation was performed in tw
-p

directions, both horizontally and. vertically.

Puither in the text a translation was also performed dui.l.ng the dis

cussion of the parabola. In thiS case it was the, curve itself which Vas

' translated.

It is now advantageous for us to translate,the axes in the case of

the hyperbola. Referring ;0 Figure 7, you will recall that both object

and image measurements were made from the focal pdlints. The values of these
.1

a

"1 4 5
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414
object distance

lens

image distance

object
focal
point

Figure 7

,

,

measurements were used in obtaining the ordered pairs'from which the graph

of the hyperbola in Figure 10 was

",drawn. to

When the lens experiment was

.first performed, you measured the

object and imagedistahces from the

focal pointss You may have felt

that this was not a natural point

from which to start. A more logical

starting point for making measure-
.

ments would be the lens.°

: If it-is desirable to make

measurements fr9m the lens rather

than the focal points,

Figure

s can be analyzed gr4hically by a

x

10

translation from

the graph of Figure 10.i the original graph, the origin was, in effect,

the focal point., We now wish to. have the origin, represent the lens'positiond

This-requiies a graphical translation. 1

040..

If you recal ; in our original-data, the positiv lijetMtiSkn6"eS
were measured to the left. The'origin is now being moved from the yalue of

the object focal pointto the lens position wlich is a movement to the,riAt;,

Therefore, the translation is taking place irithe negative directioAk 'Tue.

diStance from the lens position to-the focal point is "f". Prom this 'it

fol lows that the translation would have to
4

be made by an amount both'"dowr-:03

lard and to the left. That is, we,are shifting'ihe axes in negative directions..

4

by "arramount f. This shift is achieved by adding an mnount -f tothe object

The equation becomes

f2

X' + (-f)
X + (-f)

values and image values.

1
a



We have added ty),/gorizontal translation (-f) and the vertical translation

_(...,4_tothe variables. Now, multiplying the°equation by X + (-f) we find

(X - f) (X - f)' = f2 .

RemoVe the parentheses by applying the distributive. property)

- Xf - X' f f
2

= 12 .

Subtracting f2 from eac}i side of the equation,

XX' -Xf - X'f =

Rearranging,

XX' = Xf + X'f .

1
Multiplying the equation by TR? , we have

1 1

Tt x

This is precisely the equation for which we Ele.looking.4 /The quanti-

ties X and X' are object and image ai%t7es meacured from t4 lens.

Now take a sheet of frosted acetate with coordinate axes. Place it

over your graph obtained from the lens data. Translate the axes an amount -f in

both directions. The curve then appeari on the frosted acetate is a repre-

sentation of the translated curve.

We may conclude that the ability to translate coordinate axe is a

technique that is extremely valaable. In this caseit has erased the apparent

physical difference between the two ways'to measure the position of object and

, image. These two position descriptions change the Mathematical description, of

our graph, but do not change the shape or relative position of the two portior4

of the hyperbola.

e
Exercise 6

1 1 1
1. Start with the equation 7 ÷D= 7 whose significance is described in

the text. Algebraically translate the axes to the right and upward by

the amount f in each direction.

(Hint: form the equation TT.
1+

and simplify.
1 1

2. Algebraically solve the equation +5 2f-- for X', .

1447



3x
is a hyverbola'in the form found in Problee2. ,By how

much and in what directionswould one have to translate the axes

to put it in the form y = ?
X

TranslatNthe axes used to describe the parabola y = x - 4x + 4 so

that the vertex of theparabola lies at the origin. By what amounts
41A, ..

and in what directions did you translate the axes?

5.10 _Curve, Sketching
,

16/, 0

In our experiment with,the simple lenswe used the two focal points of

tht lens as points of reference for measuring the location of the object and

image. In so doing we found the function V' =
f2

. We remarktd in the pre-

vious sections that it may be awkward to measure distances from imaginary

points that could nefther be seen nor touched. We then elected to locate'

both/the object and image with respeCt to the position of t6 lens. These

two quantities are shown in Figure 11.

t
pin Ions 4,

Figure 11

, The relation between X and,Xr is given by,

imago
of pin

-X + 7
where the constant "f" is the focal length of the lens. In Exercise 6,

1
' Problem 2, you solved the equation

1 1
+ = T. for X'. The answer obtained

should tlig

-V
X

X°
f

f

This equation expresses a relation and provides us with an excellent _

opportunity to perform an exercise in "curve sketching". The language "curve

sketching" refers to a rough sketch of a curve that is made after observing a

few important features of the equation. Few, if any, exact points need to be

O

..
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obtained to make the sketch. The general idea is to make the sketch just to

see "how things go", and not to obtain exact representation of the graph.

To sketch the equation Xl = 17
Xf7 , we start with gsheet of coordinate

piper upon'which we draw the horizontal (X) axis and the vertical (X') axis.

The succeeding steps taken to sketch this equation are listed below.

(1) Let us consider the above equation when the value of X is large and- '

positive. Because f is relatively small with respect to X, the de-

nominator, X - f, will remain practically the same as X itself. 'If

this is the case, the entire fraction, and therefore X', will have a'

value only slightly greater than f. For example, use fr 6 and

X = 1000. Then

xt =
l000 6 6000 _.6.o4

.

l000 - 994.

Therefore, for large positive values of X the graph of the curve will

stay close to the vertical coordinate X' = f.

(2) As the value of X becomes smaller positively, the difference between X

and f becomes smaller, and therefore the value of the fraction becomes

larger. For example, again

X' =
(loo) = 757 = 6.4.
loo 6 600

6o
X* 10"-

*6

T = 35. We

as the X value comes clOser

0) When X = f, the denominator

an expression is undefined,

use f = 6, but now have X = 100. Therefore,

Using f = 6 and X = 10, we find that

see that the X' values increase very rapidly

to f, and the curve becomes very steep.

of our equation becomes zero. knee such

we cannot graph this point.
,

Using these three steps we can sketch a portion of our curvy. Since

both the Xoand X' discussed thus far are positive, the graph of the curve is

confined to the first quadrant. See Figure 12.

XI

I

-4-
ft

X' = f

4,

X = f

Figure 12

1431.4 9
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The graph of the curve approaches the value of f inlkoth the horizontal

and vertical directions. Therefore, it is helpful to draw the lipes X' = f

and X = f on the graph.

(4) No ldt us consider the e6ation when X is less than f, but still posil

tive. The denominator of the equation, X - f, would then be negative.

The numerator is still positive. -Therefore, the value of the fraction

and, consequently, of X', is negative. For X values only slightly

smaller than f, the denominator becomes e very small number. :Therefore,

the fraction itself becomes very large and is negative.

(5) When X equals zero then the value of Xf is zero. The denominator is

not zero. Since the numerator is zero, the value of the fraction is
,

zero.
1,./

Therefore, the graph of the curve passes thorough the origin.

Irw
,

As X becomes negative, the value of the numerator, becomes negative.

But the value of the denominator also becomes negative! Therefore,
;or

the value'of the fraction is again positive.

(7) As X becoMes very large and is'still negatiVe, the value of the-denom-'

inator changes very lit.tcle. I The value' of f is veryt,:emell in relation
.

to the large value of X, 84tre difference in the denominator remains

very close to X. As we determined in (1),,the Value of the fraction

lbapproaches f as the value of,X increases negatively. Since both the

numerator and denominator are negative, the value of the fraction re- ,

mains positive. °'

Using the last tour steps, we can sketch they6rtion of the curve shown

in Figure 13.
4

X = f

Figure 13

1-44.

1 3 0*
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,

To sketch the graph of the curve for the eqution X' =
Xf

g
we must

,

e
, combine the conclusions we have reached in the se n

,

steps above.' Figure 14

illustrates the sket of '-the graph fo-r-11 ttion.

a

f

9

Figure 14

Go back over the seven features once more, ,and check each against the

sketch. You should practice using sketching procedures such as this. With 4

little practice, sketches of most curves are easily drawn.

'Exercise 3

4

Sketch the following relations for allVpossible values of .x:

1. Y = x
6

3

Y'= 7crI

3. y = x(x° - 2) -C.

4. y = x2 - 2..x

6. y = 2(x + 1)

..
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5.11 The Floating Magnet

Perhaps nothing is more fascinating than a magnet. Two magnets may

attract or repel one another. Magnets will attract.tacks, paper clips, nails,

and any other ,object that contains iron. Iron filings placed on a card over

a magnet will form a beautiful pattern. Very strong magriets can be made by

winding a coif of wire around a nail and attaching the ends of the wire to a

small battery.

Magnetic phenomena are, however, extremely difficult to analyze. Mag-

nets are so nice--but what can one really do with them? The experiment tIat

follows represents one Of the few experiments with magnetic phenomena that

provide a real opportunity for manematical analysis.,

The magnets that be Aed are small circular ceramic magnets about

an inch in diameter that have holes in their centers. <four of these, each
1
Finch thick, Are needed, or two that are 7-inch thick. A knitting needle,

paper clip, centimeter ruler, and a sbt of standard masses will also be re-

quired. The experimentr? arrangement is illustrated in Figure 15. The top

two magnets are repelled strongly aWay

from the lower two. They seem to ,float

in midair without visible means of sup-

port.' The knitting needle (cut off to /

a suitable length) passes freely through

the holes in all four magnets and

through the hole in the mounting board

that is used for supports of the

setup.

Because the upper magnets cannot

slide off the capped end clf the knitting,

needle, the needle and upper magnets

move together,asa unit. The lower, )

magnets simply rest upon the meter stick.

The upper magnets, together with the

knitting needle, are free to bounce up ,

and down with the slightest push.

magnets

mounting board

weights

We wish to investigate the manner
Figure 15 4

.0.

in which the separation distance between the magnets decxeahes as_th4 load :-.0...

(
suspended from the knitting needle is increased. In this experiment, the

selection.of tide two physical q4antities of, interest is rather clear-cut.

4

I



tl
We will-Tgeleca load, ( and corresponding to this load there will be a

separation diatance between the magnets (0. The loda values are the domain

of the functiOn while the separation distances are its range.

In perfbrming the experiment, it is perhaps-best not to attempt a

direet measurement of the separation diAance. The magnets may tilt slightly

on the,needle one way or another. .Instead, the distance (d) between, the cut

end ofthe...kniliting needle and the under°side of ihelmunting board should be,

measured'. This measurement should be read to,0.1 mm on your scale by estimat-

ing tenths between adjacent divisions. The distance (d) and the separation

distance.(s) are shown in Figure 16.

A load of about 160 grams will

reduce-the separkion distance between

the magnets to less than 1 mm,, so if

we load the knitting needle plunger in

20-gram steps, we will obtain about

nine readings. Label the first*column

of your data sheet "load (/) in grams"

and the 4cond column."distance (d) in

'mm". (See Table 2.) Be sure to record
4

lee 1,4' ne of d whenonly the mass Of the
,

needle itself is applied to the upper

magnets.. When taking these readings,

tap the needle gently to make sure that

. e' the' iction between the needle and the

holes through which it passes doeqrrAinfluence the results.
,

. ,

We-must nowtchangethe Measurementspf,d into the corresponaingvalues

,.fbr's, the separation distfnce: done easily by forcing 'the magnets

together and finding the corresponding' value of d. Call It do. The required'

values of s are 'then obtained from_s =:do - d. Be sure_to convinde yourself

that this equatidn is lheCOrrect one to use. Place-the s-values found for,

Figure 16

ON.

each4load-,in-co1umar3 of_your data table.

load (/()
in grams

-
.

distance (d)
,,,,in mm

s

values

1
,

(s .

'values

,

s values ..,

2 mm
spacing ,

calculated

i
`values

,

)

,

. .

.

8

.

, .9

.

1'

Table 2
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A

The?desired data function is now shown in columns 1 and 3 of your table.
1

' Thelvaluea of the load, are the domain of the ftiction,'and"deter,r

mine the scale of the horizontal axis. The corresponding values of the separ-
ation distance s determine the scale along the.vertical axis Plot your

(1,0'p-di% and draw your "best curve" through or near'these points. This
r

'best curve is a physical model which assumes that for any intermediate value

of the load, a corresponding value

found. Your graph of the physical

1.60k something like the mph shown in Figure 17.

of the separation distance would have been

model for the "floating" magnet should now

,-1

16

11+

1
0

* d 10

tt-I 8

6

FLOATING MAGNET RELATION

. 20' 1+0 60 :80 100 - 120 11+0

load (2) in Oams

A

ft
Figure 17

5.12 Search for a Mathematical Model

Figure 17 is a rePresentation.ofthe

now finda mathematical model(an

At this point it might be to our a&

Your curve of the kind shown in

results of dieexperiment, and we must

equat/bn) which describaa this curve.

vantage to look back at all the kinds of graphs we
a

of thede might well be the one we are looking

page shOws the eight graphs studied in Chapters 1,

it a "Gallery of Graphs ".`

AAL
0

148
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have- encountered. One

Figuie 18 on the next.

2, i and 4. We might can.
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Figure 18(a) shows the linear relation obtained in the-Falling Sphere

Ekperiment. The converse relation is also linear. This relation was also

encountered in the Number Generatel Experiment. The relation shown in

Figure 18(4) was obtained'in the Wick and Horiiontal Metronome Ekperiment.

The parabolic relation was found with th'e Oscillating Spring and shown in

Figure 18(o), This was found to be the same as the converse of'the Horizontal

Metronome and Wick relation. The reciprocal relation for the SiMtle Lens,

Figure 18(d), is identical to its own converse.

(a)

THE FALLING SPHERE

.Linear Converse
Relation Relation

T (b)
THE WICK

d

Paraboric
Relation

Converse
Relation

d

(c)
THE oac;1444TIITG SPRING, 1.

\ .

\\ ParabolicParabol Converse
Relhtion Relation

T



4

(d)

THE SIMPLE LENS

d

Reciprocal
Relation

41,

0 .1
4

Figure 18 :

fl
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Relation
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We nape to find a graph in the gallery that has a shape similar to the

shape we have already obtained for the floating magnet relation. Perhaps we

may use only a portion of one of these graphito describe the magnet relation.

As we scan the "Rogue's" gallery, we'see three possibilities:

"(1) the dashed portion of the parabolic relation at the left in

Figure 18(b);

(2) the dashed portion of the parabolip relation at the left in

Figure 18(c)k

(3) the solid curve portion of the reciprocal relation shown in

Figure 18(d).

Let us examine these possibilities one by one.

If we were to use the left-hand portioli of the upright parabola in

Figure 18(b), we would have to translate the axes to the left so.thatsthis

part of the pENbola would appear.ip the first quadrant. See Figure 19(a).

It must appear in the first quadrant, for that is the location of our float-

ing magnet relation. Having translated the axes in this way, however, we

find that the paraho.lieghows one separation distance between the magnets.-for

two different loads, as shown by the dotted line. This does'not iepreaeht

the physical situation and therefore this parabolic model cannot be used.

A

Figure 19

If we were to attempt to use the lower half of the parabola on its

side, Figure 18(s), aaimilai" situation would confront us. We would now

have to translate the axes downward td place the dashed portion in the first

,
'quadrant, as in Figure 19(b). Now, however; the parabolic model would predict

two different aeparations of the magnets for one load, as shown by the dotted

151 r



line. Again, this is a physically impossible situation and the model must be

discarded.
.

Suppose in the two cases above, we,trY to'solve our problem by "th

ing away" the half of the .parabola we do not want. Then, in each case thee

would be an artificial lAitation. In one case the domain of loaci4 would-:be

limited, and in the other case, the range of Separation would be limited.

Therefore, we mAst reject the possibility ofihalf parabolas, for in both cases

the limitations do not correspond to the physical situation.

No objections can be raised in the case of the reciprocal relation of

Figure 18(d). The graph needs no translation to be similar to the floating

magnet graph. It also does not indicate multiple loa s a single separa-

tion, or multiple separations for a single, load. It s, therefore, the one

we will employ in our attempt to describe the floating magnet relation.

t
5,13 The Reciprocal Relation

The function we have obtained consists of the ordered pairs (Its) that

are on the "best curve" we haVedrawn through the experimental points. We

have now decided to represent this curve by a reciprocal relation. As you will

'reCall from our study of the Simple Lens, the graph of the converse relation

is a curve which is identical to the graph of the reciprocal relation itself.

'POI.. the Magnet relation,Lthis means that we could follow either of two pi.o-

cetures. We could form a new domain consisting of -values and plot these

against the corresponding s-values in the range, or we could use the converse p
magnet relation cofisIsting of the ordered pairs (s, tom a new domain

7
`consisting of

1
--values, and plot these against the corresporldingai-values
s

the .range.

Faced with these two possibilities, we must make a Choice.- If we reir

member that the very first value of the load (,i ) that we placed in our table

was 0-, we can see immediately that the corresponding value of is not de-
1fined., No similar difficulty arises_for because s did not assume the value_

0. Let us hope, then, that a graph of pail4 yield.a straight

line. If it does, we will have found the reciprocal relation we are seeking.

BefoA going farther, however, we should graph the converse magnet re-

lation which consists of the ordered pairs (s,)g). Replot your data points

and draw a new "best curve" on a sheet of coordinate,paper to obtain a graph

of the converse relation. Your new graph should be similar to the one shown
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:Figure 20

6 8 , 10 12 14 16.

Separation (s) in mm

Now we must tabulate
1 values corresponding to each value of s. Place

these in column 4 of your` data table. Now graph the (-1,1) relation using
s

the horizontal axis for. values and the vertical axis for the values. This

is the relatioe.hope is a linear one, for if it isy the relation between s

and J will then be a reciprocal relation.
am.

Draw a "best curve" throUgh these points. When this is done, your

graph should appear very similar to thq one shown in Figure 21.

a6o

0.1 0.2 0.4 0.50'
1/4



This graph is disappointing. It does not,seem to be a line by any

stretch of one's imagination. This means also' that the relation between s.

and is not a reciprocal relation.

But look more closely at your graph. Although the entire graph is

most certainly not a line, the first four points (small loads, large separa-
9

tions and lows values) do line up fairly ell.' This restricted part of the

graph shows a linear behavior. tut when the loads became too large and the

separations too small, the graph curves off to some new sort of relation.

Let is draw a "best straight line" through these firstfour points and

find the corresponding mathematical relation. See Figure 21. It is true

the mathematical equation Will not describe the remainder ,of the graph, but
4 _

at least it should provide an accurate description of the behavior of the

floating magnets for small load values.(

The equation representing this "best straight line" will be of the

form

= m (!-; c).

This is the familiar point -slope pqUation. En this firm it is relating-

to

The values of the constants "m" and "c" are found -from the graph of

the line. The constant c is not equal to zero because at "zero load" we

still have the loading of the upper magnets and needle which influence; the

separation distance. This, then, is the mathematical model we have been seek-

ing. We must recognize that this model does not pretend to describe the en-

tire behavior of the Qoating magnet; but only that part oe its Behavior that

corresponds to small loads. Notice also that we have Obtained a relation

that is the converse of the experimental relation. The above relation pre-

dicts the values of the load for certain fixed values of the separation dis-

tance. In the evriment, the separation distance was determined by the load.

One final step will make our analysis complete. We should now use this
Or

equation to obtain pairs (s,./) to compare directly with the results of our

experiment. We are sure that these ,calculaied.pointNillnot match the ex-

perimental curve for large loads and small magnet separations. In spite of

this, we will calculate to see how good the mathematical model is for large

separation distances and how poor it is for-small separation distances.
1

In column 5 of your data table select s-values-spaced every 2 mm over

the entire range of the original function. Place the calculated values of



tae load ()r) found from your equation in column 6. Plot these calculated

Points on_thg_same sheet of coordinate paper used to display the converse

relation (as in Figure 20). Draw adashed line through these points' to dis-

tinguish the graph of the mathematical model-from the graph of the expbrimental

results.

How do the two'graphs compare? You should have obtained a result

similar to.the one indicated in Figure 22. -

140 \

m 120 \

5 \
P

.

Data points C)

.-1

z Calcuated points
,8C

60 NIL

8 40

20

0
6 8 10

Separation .(s) in mm

Figure 22

12 14 16 .

We see that the curve calculated from the mathematical model represents

the behavior of the floating magnet for loads thatare,sufficiently small.

Predictions from this equation for larger loads, however, would not agree with

the actual behavior of the magnets.

The restriction that we have placed

floating magnets -is an extremely important . We _claim only to have an

equation'that "fits6 the experimental cury or small loads and relatively

the mathematical model for the
^rA,

large separation distances. We may des ibe this restriction by saying that

the domain of separation distances (fo the converse relation) must be re-

stricted. In a previous section the'd tritlqt"-t It'lehiPliba all- of theta

positive numbers. In the present expe'1m- t we cannot use the whole set of

positive numbers. The domain of the present relation is governed by the

ability of this function to follow th behavior of the magnas.
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Exercise 8

4
f4.7 In the Floating-Magnet experiment we obtained the relation

7.40161

4

distance does it predict for zero load?

= 0

Algebraically obtain the converse o4. this relation. What separation'

2. for a limited domain, the floating magnet function was found to be

= - c)

What is the unit of m? the unit of c?

Sketch roughly the graph of'y =
k ,

for k

A particular reciprocal relation is y = Find the elements in the

range that correspond to the following element§ in the domain:

6.10 , 10
-

, 10'2, 1, 102, 104:106.

For the relation of the previous exercise;,find the elements in the
o

domain of the relation that correspond to!the following elements n

then range-: 10
L6

, l0
-4

10
-2

y 1, 10
2 4
, 101, 10

6
.

6. Locate the x and y intercepts for the relation y =
k
'for k > 0.

?

5.14 Cuiye.Fitting
".

Let us restate the procedure we used in the previous section to find a

mathematical model fo'r the magnet relation. We found that a mathematical

model could be used to represent the results of an experiment if the domain

o(1is mathematical relation wap suitably restricted. Graphically we see'

that the curve for the model and the curve representing the data follow along

together for a while, but soon their paths separate. We might say that the

curve of the mathematical model "fits" the experimental curve in one region,

but not in others.

'Suppose that we had been interested, in finding an equation that would

accurately describe the behavior of the -magnets for large loads and small

separations rather than for small, loads and large separations. Our. previous

model would be a poor one. But do you suppose it might be possible to "fit"'

a reciprocal relation to the experimental curve so that the situation for

large loads would be described?

156
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The best way to answeP this question is to go back to your graph of the

(la) relation. See Figure 21. ke drew ebest straight line through the

first four'iloihts'before. We could,. however, draw another straight line 4

through the last three points. These points seem to line up fairly well..

This would give us a new equation like the one obtained previously, but with
a

different values of the constants.. If now we were to calculate (s, )points

from this modes and graph 4em, we would expect a "fit" to the experimental '' "--

data along a quite-different section of the experimental graph. We would now

have to impose new restrictions upon the domain of the mathematical represent-
.

ation. It is important to note, however, that this model may he just as good

in its dOmain and range as the first model was for small loads, and large magnet

separations.,

In general, we are able to fit a reciprocal relation to the experimental

relation for the floating magnets over any restricted part of th, experimental

curve we choose. ,i1.1Niils kind of procedure is called "curve fitting".

It should be pointed outIthat the reciprocal relation-Used to represent

tfie behavior of the floating magnets not the only reciprocal relation that

might be,used. We found that was a 1 near function of
1
over a limited

domain of
s
Values. We might also have lied to determine whether, could be

1
'

considered as a linear function of or even . We know that whatevers2 -

1

trial function we choose, the separation distance (s) must become smaller, and

smaller as the load (I) is increased. One of these new reciprocal relations

might very well yield a much better fit to the experimental relation thaethe

one used. By "better fit" is meant only that the graph of the.mathematica-

equation might represent the experimental relation over alarger domain and m'

range.

Exercise .2

A beaker Of, water was heated on a hot plate: ',The temperature of the water was

recorded every Minute and the following data was obtained.

151 3°
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Time
(miry)

Temp.
(oc)

2

3

4

5

6

7

8

20

34

47

408

-

75

82

86

90

.1. Graph the time - temperature relation. Over what range and domain would

you say that the rdlation istes linear one? #
,

-.---

Draw your best straight line tOkr.epresent the time-temperature relation
e'.-----

for a restricted time domain. Find the equation that repreents this
__..

line. ,
.

L
3. Use the equation obtained in Exercise 2 to calculateemperatuies for ,

each of the nine time readings. What is the error in temperature pre-
_

diction at times,,of 1 mih; 4 min; 7 min ?

4. In the Floating Magnet exrriment you made a graph of the reciprocal

of the separation distance ( ) along the horizontal axis and the load

IV) along the vertical axis. Draw a best straight line through the

_points which represent loads of 120, 140 and -160 grams. Obtain the

equation for this line. Calculate load values (jWfrom this equation,

selecting 5 or '6 equally spaced s-values-that Will live loads in the

range from 110 to 170 grams. Graph these calculated Points aftd compare
4

.
them to your original experimental points. Over what range of loads

1W
do yoU find a good "fief

it
5.15 -Summary

In-this'chapter we have studied some'ehangteristics of ceEain curves.

We learned the meaning 'of thd slope of a curve at a given point. This slope

%es found to have specialphysical significance as velocity. Our guess was
, 4

-

verified to odd satisfaction by compar4ng the measured velocity with one

Ab
calculated frpm the graph.
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From the data obtained in the Lens Ekperiment we were led to the study

of the reciprocal :unction. By analyzing some properties of the hyperbola,

it was found that the curve could,e sketched though a study of its equation.

While the curve draWn in this way was not an accurate physical model, a good

approximation was obtained. _)*
1

Finally, after working w1 h the data from the Magnets5cperimeilt, we

learned that not all curves would fit into simple groups. This data presented
0e

us vith the problem of a complex function from which we could arrive at only

partial solutions.

This Chapter, then, began our experience with the more complicated

curves. As you continue to study mathematics, mother more rigorous methods.of

obtaining same of the above information will be found.
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GLOSSARY

` Part III

ABSOLUTE VALUE -4- The absolute value-all nonzero real Rumber is the greater

of that number and its opposite. The absolute valuof zero is zero.

'AMPLITUDE -- Maximum displacement on either side of an equilibrium position.

ANALOGY -- A form of mathematical. inference based on the assumption that.
problems which have a similar appearance will have a similar treatment.

ANGLE-OF,INCLINATION -- The angle measured between the horizontal axis and

the given line.

COMPARISON PROPERTY -- If a and b are real numberb, then exactly one Of the

fqCowing is true: a < b, a = b) b < a

CONJECTURE -- A conclusion reached without sufficient evidence for definite

knowledge.

bONSTANTL A constant is a number that remains unchanged-during the course
0

of a particLar discussion.

CONTINUITY -- An uninterrupted succession in space of time.

CONVERSE -- ReNfersed in order, relation, or action.

COORDINATE PLANE -- The plailaggtaining two perpendicular coordinate axes.

Points in the coordinate plane aredetermined by orderel pairs of real-

numbers (coordinates).

DEFLECTION -- The amount of bend (as indicated by a pointer relative to.a

fixed scale).

DERIVATION -- Statements which show that a result is a necessary consequence

accepted statements.

DISPLACE -- When a, directedovement of a coordinate axis is made, we say

that the axis is displaced:
-t

DOMAIN -- The domain is the set of first elements of the ordered pairs in a

relation or function.

EQUILIBRIUM -- The state of being in balance which occurs when the resultaht

of all outside forces acting on a body is zero.

FOCAL LENGTH -- The distance between a lens and the focal point.
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FOCAL POINT -- The point atTinich.a lens will cause
.

parlllel rays to converge.
. 1 .

.

0
1

P. P.

. p
,
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FORCE -- Force is a physical concept\lwhich can be described loosely as the

push or-pullon an object.

FULCRUM -- The point of support and rdtation of a seesaw orlever,4 .

FUNCTION -- A function is a set of ordered pairs such that each element of

the domain appears in one and only one ordered pair.:

GENERATE -- To trace oit mathematically by a moving point, line, or plane.

IMAGE,DISTANCE -- The distance measured from some fixed point to the image.

(In this text the focal point on the image side of the lens is taken

as the fixed point.)

INTEGERS -- The set of counting numbers, zero, and the additive inverses of

the-counting numbers make up the set of integers,

INTERCEPT -- The point on a number line at which a second line meets it.

INTERPOLATE -- To find a value between two given values:

IRRATIONAL NUMBER real'number which cannot be expressed as the ratio

of an integer to a counting number.

' LINEAR -- Pertaining to straight lines.

ASS -- Mass is a fundamental property of a body. It is not the same as the

weight of the body. On the earth's surface, the weight of an object is

proportional* its mass.

MATHEMATICAL MODEL -- A mathematical relation which represents the physical

model. In most situations it Will .be an.equation,.

MOMENT OF FORCE -- The moment of force is 'tUrning effect of a force.

NEGATIVE INTEGERS -- The negatives ofthe set of counting numbers.

NEGATIVE REAL. NUMBERS -,- The set of real numbers associated with points to

.the left of zero on the number line, where the unit'point is to the

right of zero, is the set of negative real numbers.

OBJECT DISTANCE -- The distance measured from some fixed point,to the object.

In this text the focal point on the object side of the'leni3 is taken as
.

the fixed point.,
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ORDERED PAIR -- A, set containing exactly two elements, (a,b), in which one

1-element ;is recognized as the first element.

ORDERING PROPERTY'FOR OPPOSITES -- For real nuMbersa and pl, if a <b, then
.n

-:b < - a . .

.

4--

.

ORIENTATION -- Arranging correctly according to given facts or principles.

Determining a position.

OSCILLATING -- Swingt4 from one extreme to another. To travel back and

forty} between points. ,

PERIOD -- The time interval between any event and the moment the sand

occurs again is called the period.

-14P ENDICULAR LINES -- Two lines which meet at right angles2j

PHYSICAL MODEL -- A'Single curve on a graph of the set of points which best

represents a collection of data. Itis an idealization of the behavior

of-a physicEL system.

POSITIVE'INTEGERS The set of counting numbers.

0

POSITIVE REAL NUMBERS --40The get of real numbers greater than zero. Usually

represented by the points to the right of zero on the number line.
04

PROPERTY FOR OPPOSITES -- See Ordering Property for Opposites.

PROPERTY OF ORDER -- If a and b are two real, numbers on the number line, and

a is to the left of b,bthen a < b.

QUADRANT -- One of the four regions into which the coordinate axes diyide
de

the coordinate plane.

QUANTITATIVE -- Relating to or expressible in,terMs of quantity.- Involving

the measurement of quantity or amount.

RANGE -- The range'is the set of second elements of the ordered pairs in

e= relation or function.

1IATIONAL NUMBER -- A number which can be expressed as the ratio of an iteger

to a counting \lumber. /

REAL NJ)1BE1 -- The set of all numbers associated with points on the nUmber-
4

4
line. A number which can be represented by a Vinite or infinite decimal,

expansions,

RECIPROCAL -- The multiplicative inverse of a nonzero real number is callqd

the reciprocal of-the number. The reciprocal of a real number "a" (a / 0)

is th; number
1

. Zero has no reciprocal.
a,.

".



4 ' RELATION 1A relation is a set of ordered pairs. When the pair (x,yk4 is in

the set and we' use RIO represent the relation, we say that x R y is-

true.'

REPELLED -- Tending to be forced away or apart.

SLOPE -- The slope measures the steepness of the inclination of a line. It

.

is'the ratio of the rise to the run.

SLOPE OF A CURVE -- The slope of a straight line which just touches the curve

at a given point.

TERMINAL VELOCITY -- When the upward resistive force equals the downward

gravitational pull on the object, terminal velocity has been reached.

TRANSLATION OF AXES -- Changing the coordinates of a set of points to coor-

dinates referring to a new set of axes parallel to the original-axes.

TRANSITIVE PROPERTY -- If a relation R. has the property that whenever, a R b

and b R c are true statements then a R c is %true atatement,

,

we say that R has the transitive property.

UNIQUE -- Just one. Consisting,on one and'oply one. Leading to one and

only one solution.

VARIABLE -- A symbol which can be replaced by any member of a given set.

VELOCITY (CONSTANT) -- The slope'of the line on a time-distance plot. It

is given. by
distance

time -

I

".

,

3
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